Linear. It's in the form C= ax + by, so you back solve to get into the form you know is linear (y= mx + b). So using SADMEP (opposite of Pemdas) we can decide which order to solve for "Y=" in. 4y =7-3x. Y=((7-3X)/4). Y= 7/4 -3/4x. Y=-3/4x +7/4. Which is linear
Answer:
see below
Step-by-step explanation:
f(x) = 5x^3 +1, g(x) = – 2x^2, and h(x) = - 4x^2 – 2x +5
f(-8) = 5(-8)^3 +1 = 5 *(-512) +1 =-2560+1 =-2559
g( -6) = -2 ( -6) ^2 = -2 ( 36) = -72
h(9) = -4( 9)^2 -2(9) +5 = -4 ( 81) -18+5 = -324-18+5=-337
\left[x _{2}\right] = \left[ \frac{-1+i \,\sqrt{3}+2\,by+\left( -2\,i \right) \,\sqrt{3}\,by}{2^{\frac{2}{3}}\,\sqrt[3]{\left( 432\,by+\sqrt{\left( -6912+41472\,by+103680\,by^{2}+55296\,by^{3}\right) }\right) }}+\frac{\frac{ - \sqrt[3]{\left( 432\,by+\sqrt{\left( -6912+41472\,by+103680\,by^{2}+55296\,by^{3}\right) }\right) }}{24}+\left( \frac{-1}{24}\,i \right) \,\sqrt{3}\,\sqrt[3]{\left( 432\,by+\sqrt{\left( -6912+41472\,by+103680\,by^{2}+55296\,by^{3}\right) }\right) }}{\sqrt[3]{2}}\right][x2]=⎣⎢⎢⎢⎢⎡2323√(432by+√(−6912+41472by+103680by2+55296by3))−1+i√3+2by+(−2i)√3by+3√224−3√(432by+√(−6912+41472by+103680by2+55296by3))+(24−1i)√33√(432by+√(−6912+41472by+103680by2+55296by3))⎦⎥⎥⎥⎥⎤
totally answer.