KE=.5mv^2
M=mass
v=velocity
.5(4)(100)=200
That should be the answer.
I think convergent but could be wrong
Answer:
Below
Explanation:
2) there are 28 protons in this isotope
The number that is on the bottom of the "stacked pair" tells you how many protons are in this isotope. It is often represented by the variable Z.
3) there are 35 neutrons in this isotope
Subtract the number of protons (28) from the top number
4) there are 28 electrons in the neutral element of Nickel
If you were to look at the period table and find Ni, you would see that its atomic number is 28. This number tells us the amount of protons and electrons there are in that element.
5) 62.9296694 atomic mass units
Just search it up (unless your teacher wants you to calculate it)
6) there are 92 protons in this isotope
Again just look at the Z value to find the proton count
7) there are 146 neutrons in this isotope
Subtract 238 - 92 = 146
8) there are 92 electrons in the neutral element of uranium
Again just look at the periodic table and find U
9) 238.0507882 atomic mass units
10) 12C or carbon 12 is more likely to bond with oxygen that 14c carbon 14
This is because 12C is more abundant at 98.93% than 14C
Hope this helps! Best of luck <3
When you mix 0.1 M HCI, with a drop of brothymol blje, this will make the incubator to change from blue to yellow.
Metallic property also rises with increasing atomic radius. Metallic character reduces with an increase in the amount of outer electrons.
<h3>What is
atomic radius?</h3>
A chemical element's atomic radius, which is typically the average or typical distance between the nucleus's core and the outermost isolated electron, serves as a gauge for the size of an atom. There are numerous non-equivalent definitions of atomic radius since the border is not a clearly defined physical entity. Van der Waals radius, ionic radius, metallic radius, and covalent radius are the four most frequently used definitions of atomic radius. The atomic radius is often measured in a chemically linked condition because it is difficult to isolate individual atoms to measure their radii separately. However, theoretical computations are easier when considering isolated atoms.
To learn more about atomic radius from the given link:
brainly.com/question/13607061
#SPJ4