Answer:
Calculate the mass of BR -79? Bromine has 2 naturally occurring isotopes (Br-79 and Br-81) and has an atomic mass of 79.904 amu
Explanation:
if i get this wrong srry
<span>Of the answers listed option B looks like the most complete. Ie "Check for the presence of alpha, beta, and gamma particles." the significant presence of these particles is a specific indicator of radioactive decay, i.e: unstable atoms spontaneously undergoing a nuclear reaction.</span>
Pressure has no effect on the solubility of KNO3 in water. This is because it is solid in liquid type of solution. In solid in liquid type of solution, solid is solute (minor component), liquid is solvent (major component). For solid in liquid type of solutions, solubility is independent of pressure.
On other hand, pressure has a pronounced effect on the solubility of gas in liquid type solutions. In such system, gas is solute (minor component) and liquid is solvent (major component). Example of such solution is aerated water. Herein, CO2 is dissolved in water. In such gas in liquid type of solutions, solubility increases with increasing pressure.
When the same species undergoes both oxidation and reduction in a single redox reaction, this is referred to as a disproportionation. Therefore, divide it into two equal reactions.
NO2→NO^−3
NO2→NO
and do the usual changes
First, balance the two half reactions:
3. NO2 +H2O →NO^−3 + 2 H^+ + e−
4. NO2 +2 H^+ + 2e− → NO + H2O
Now multiply one or both half-reactions to ensure that each has the same number of electrons. Here, Eqn (3) x 2 results in each half-reaction having two electrons:
5. 2 NO2 + 2 H2O → 2 NO^−3 + 4H^+ + 2e−
Now add Eqn 4 and 5 (the electrons now cancel each other):
3NO2 + 2H^+ + 2H2O → NO + 2 NO−3 + H2O + 4H+
and cancel terms that’s common to both sides:
3NO2 + H2O → NO + 2NO^−3 + 2H+
This is the net ionic equation describing the oxidation of NO2 to NO3 in basic solution.
Learn more about balancing equation here:
brainly.com/question/26227625
#SPJ4
Answer:
Chemical bonds are the electrical forces of attraction that hold atoms or ions together to form molecules. Different types of chemical bonds and their varying intensity are directly responsible for some of the physical properties of minerals such as hardness, melting and boiling points, solubility, and conductivity.
Explanation: