1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nadezda [96]
3 years ago
14

If the area of the circle is 225pi what is the diameter

Mathematics
1 answer:
Stells [14]3 years ago
8 0

Answer:

30cm

Step-by-step explanation:

Area is πr²

So,

πr²=225π

r=√225

r=15cm

Diameter=2r=30

Maths is easy peasy

You might be interested in
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
3 years ago
PLS HELP<br>Worth 20 Points<br>Easy <br>I will give brainilest​
erma4kov [3.2K]

Answer:

x-axis

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Which numbers in set A are elements in both the subset of odd numbers and the subset of multiples of 3? Plz help I will give the
hodyreva [135]

Only 3 and 9 are both the subset of odd numbers and the subset of multiples of 3.

6 0
3 years ago
Leo wants to paint a moral that covers a wall with an area of 1440 sq ft. the height of the wall is 2 fifths of its length. What
DerKrebs [107]
The length of the wall will be 288.... I think
4 0
3 years ago
Read 2 more answers
Somebody please help me with this !!!
Damm [24]

Step-by-step explanation:

Case 1 :

3x + 2y = 6 \\ 4x + y = 2 \\ 3x = 6 - 2y \\ x =  \frac{6 - 2y}{3}  = \\ x = 2 -  \frac{2y}{3}  \\ 4(2 -  \frac{2y}{3} ) + y = 2 \\ 8 -  \frac{8y}{3}  + y = 2 \\  - 1.67y =  - 6 \\

y = 3.59 \\ x = 2 -  \frac{2y}{3}  \\x =  2 -  \frac{2 \times 3.59}{3}  \\  \\ x =  - 0.39

Case 2 :

3x + 2y = 6 \\ 4x  -  y = 2 \\ x = 2 -  \frac{2y}{3}  \\ 4(2 -  \frac{2y}{3} ) - y = 2 \\ 8 -  \frac{8y}{3}  - y = 2 \\   - 3.67y=  - 6 \\ y = 1.63

x = 2 -  \frac{2y}{3}  \\ x = 2 -  \frac{2 \times 1.63}{3}  \\ x = 2 - 1.087 \\ x = 0.913

7 0
3 years ago
Other questions:
  • PLEASE HELP ME...
    10·2 answers
  • An undefined term can Be used in a theorem <br><br> Sometimes <br> Always <br> Never
    13·2 answers
  • A family of three children, what is the probability of 2 boys and 1 girl?
    8·1 answer
  • Solving systems of equations algebraically.
    15·1 answer
  • Alejandra desea realizar sus ejercicios cardiovasculares, para ello corre alrededor de una piscina de forma circular, ¿Cuánto re
    7·1 answer
  • Joe bought a television that was on sale for 20% off. He paid $160.00 for it. What was the original price?
    6·1 answer
  • Find the value of x. Round to the nearest tenth in necessary.
    6·1 answer
  • What's 3x+5y=-7 (show step by step on paper)
    9·1 answer
  • Record the equivalent ratio. 2:5
    15·2 answers
  • Graph the function y=-3/4(x+3)(x+7)
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!