<span>A) x = 41t
The classic equation for distance is velocity multiplied by time. And unfortunately, all of your available options have the form of that equation. In fact, the only difference between any of the equations is what looks to be velocity. And in order to solve the problem initially, you need to divide the velocity vector into a vertical velocity vector and a horizontal velocity vector. And the horizontal velocity vector is simply the cosine of the angle multiplied by the total velocity. So
H = 120*cos(70) = 120*0.34202 = 41.04242
So the horizontal velocity is about 41 m/s. Looking at the available options, only "A" even comes close.</span>
might be 140mph, so that is a guess that i just made so plz let me know if im wrong or correct
Answer:
Vy = V0 sin 38 where Vy is the initial vertical velocity
The ball will accelerate downwards (until it lands)
Note the signs involved if Vy is positive then g must be negative
The acceleration is constant until the ball lands
t (upwards) = (0 - Vy) / -g = Vy / g final velocity = 0
t(downwards = (-Vy - 0) / -g = Vy / g final velocity = -Vy
time upwards = time downwards (conservation laws)
We simply asked to name three uses for mercury.
The most common and well-known use of mercury is the production of thermometers. It's property to stay liquid at room temperature makes it ideal for a temperature indicator. However, the use of mercury is thermometers has been phased out due to health hazards.
It is also used to form an amalgam which is the result of its combination with silver or gold. Mercury has been used to mine gold and silver. This application has also been phased out.
Today's use of mercury includes mercury-vapor lamps which are the bright lamps used in high-ways.
Air resistance doesn't appear in the formula for gravitational force, because it doesn't affect it. Mass does because it does.