Answer:
Vehicles typically employ both hydraulic shock absorbers and springs or torsion bars. In this combination, "shock absorber" refers specifically to the hydraulic piston that absorbs and dissipates vibration.
Explanation:
hope this helps
We need to be careful here.
The calculation of the gravitational force between two objects
refers to the distance between their centers.
The minimum possible distance between the Earth's and moon's
centers is the sum of their radii (radiuses).
Earth's radius . . . . . 6,360 km = 6.36 x 10⁶ meters
Moon's radius . . . . . 1,738 km = 1.738 x 10⁶ meters
Sum of their radii = 8.098 x 10⁶ meters
Also:
Earth's mass . . . . . 5.972 x 10²⁴ kg
Moon's mass . . . . . 7.348 x 10²² kg
<span>
and now we're ready to go !
Gravitational force =
G M₁ M₂ / R²
= (6.67 x 10⁻¹¹ N-m²/kg²)(</span><span>5.972 x 10²⁴ kg)(7.348 x 10²² kg)/</span>(8.098 x 10⁶ m)²
= (6.67 · 5.972 · 7.348 / 8.098²) · (10²³) Newtons
= (I get ...) 4.463 x 10²³ Newtons
That's almost exactly 10²³ pounds
= 50,153,000,000,000,000,000 tons.
Those are big numbers.
All I can say is: I wouldn't exactly call that "resting" on the surface".
Answer:
m = 62.14 g
Explanation:
Energy used to melt the ice is the energy released by the condensation of the water forms on the glass
so here we have
energy for the condensation of water is given as
let mass of water condensed = m

now the energy of vaporization is given as

here we know that


Now we have


Answer:
4.545454 seconds
Explanation:
1500/330=4.545454 seconds
Answer: 11000 N
Explanation:
Given that,
Time required to stop car = 3.0 s
The car's momentum = 33,000
kg m/s
magnitude of force = ?
Recall that impulse is equal to the change in momentum of the car, hence
Impulse (I) = Momentum
(Since I = force x time, then
Force x time = momentum)
F x 3.0 s = 33,000 kg m/s
F = 33,000kg m/s / 3.0s
F = 11,000 N
Thus, 11000N of force was used to stop the car.