Answer:
The maximum mass that can fall on the mattress without exceeding the maximum compression distance is 16.6 kg
Explanation:
Hi there!
Due to conservation of energy, the potential energy (PE) of the mass at a height of 3.32 m will be transformed into elastic potential energy (EPE) when it falls on the mattress:
PE = EPE
m · g · h = 1/2 k · x²
Where:
m = mass.
g = acceleration due to gravity.
h = height.
k = spring constant.
x = compression distance
The maximum compression distance is 0.1289 m, then, the maximum elastic potential energy will be the following:
EPE =1/2 k · x²
EPE = 1/2 · 65144 N/m · (0.1289 m)² = 541.2 J
Then, using the equation of gravitational potential energy:
PE = m · g · h = 541.2 J
m = 541.2 J/ g · h
m = 541.2 kg · m²/s² / (9.8 m/s² · 3.32 m)
m = 16.6 kg
The maximum mass that can fall on the mattress without exceeding the maximum compression distance is 16.6 kg.
Answer:
ω = 0.05 rad/s
Explanation:
We consider the centripetal force acting as the weight force on the surface of the cylinder. Therefore,

where,
ω = angular velocity of cylinder = ?
g = required acceleration = 9.8 m/s²
r = radius of cylinder = diameter/2 = 5.9 mi/2 = 2.95 mi = 4023.36 m
Therefore,

<u>ω = 0.05 rad/s</u>
<span>a scale of temperature with absolute zero as zero, and the triple point of water as exactly 273.16 degrees.</span>
Answer:
gravitational force attract us towards the ground
Explanation:
Answer: F = 1391 N
Explanation:
The information given to you are:
Mass M = 1300 kg
Acceleration a = 1.07 m/s^2
The magnitude of the force striking the building will be
F = ma
Where
F = force
Substitute mass M and acceleration a into the formula
F = 1300 × 1.07
F = 1391 N
Therefore, the wrecking ball strikes the building with a force of 1391 N