They travel the way the wind is blowing and also towards the shoreline
The closer you are to the ground the more accurate you'll be. That's why most snipers are in the "prone" position.
Answer:
310 meters
Explanation:
Given:
v₀ = 0 m/s
t = 8.0 s
a = -9.8 m/s²
Find: Δy
Δy = v₀ t + ½ at²
Δy = (0 m/s) (8.0 s) + ½ (-9.8 m/s²) (8.0 s)²
Δy = -313.6
Rounded to two significant figures, the object fell 310 meters.
Because it is if you know you know and it is also helping the sentwcnde and air and confiscation
Answer:
B = 8.0487mT
Explanation:
To solve the exercise it is necessary to take into account the considerations of the Magnetic Force described by Faraday,
The magnetic force is given by the formula

Where,
B = Magnetic Field
I = Current
L = Length
Angle between the magnetic field and the velocity, for this case are perpendicular, then is 90 degrees
According to our data we have that
I = 16.4A
F = 0.132N/m
As we know our equation must be modificated to Force per length unit, that is

Replacing the values we have that

Solving for B,

