Good for him ! If he's also adhering to a healthy diet, getting plenty of sleep, avoiding substance dependence, and minimizing his stress level, then he's doing everything he can to maximize his chances for a long, healthy, pleasant and rewarding fun life.
The axial field is the integration of the field from each element of charge around the ring. Because of symmetry, the field is only in the direction of the axis. The field from an element ds in the ring is
<span>dE = (qs*ds)cos(T)/(4*pi*e0)*(x^2 + R^2) </span>
<span>where x is the distance along the axis from the plane of the ring, R is the radius of the ring, qs is the linear charge density, T is the angle of the field from the x-axis. </span>
<span>However, cos(T) = x/sqrt(x^2 + R^2) </span>
<span>so the equation becomes </span>
<span>dE = (qs*ds)*[x/sqrt(x^2 + R^2)]/(4*pi*e0)*(x^2 + R^2) </span>
<span>dE =[qs*ds/(4*pi*e0)]*x/(x^2 + R^2)^1.5 </span>
<span>Integrating around the ring you get </span>
<span>E = (2*pi*R/4*pi*e0)*x/(x^2 + R^2)^1.5 </span>
<span>E = (R/2*e0)*x*(x^2 + R^2)^-1.5 </span>
<span>we differentiate wrt x, the term R/2*e0 is a constant K, and the derivative is </span>
<span>dE/dx = K*{(x^2 + R^2)^-1.5 +x*[(-1.5)*(x^2 + R^2)^-2.5]*2x} </span>
<span>dE/dx = K*{(x^2 + R^2)^-1.5 - 3*x^2*(x^2 + R^2)^-2.5} </span>
<span>to find the maxima set this = 0, giving </span>
<span>(x^2 + R^2)^-1.5 - 3*x^2*(x^2 + R^2)^-2.5 = 0 </span>
<span>mult both side by (x^2 + R^2)^2.5 to get </span>
<span>(x^2 + R^2) - 3*x^2 = 0 </span>
<span>-2*x^2 + R^2 = 0 </span>
<span>-2*x^2 = -R^2 </span>
<span>x = (+/-)R/sqrt(2) </span>
Answer:
Q = c M ΔT where c is the heat capacity and M the mass present
Q2 / Q1 = M2 / M1 since the other factors are the same
M = ρ V where ρ is the density
M = ρ Π (d / 2)^2 where d is the diameter of the sphere
M2 / M1 = (2 D/2)^2 / (D/2)^2 = 4
It will take 4Q heat to heat the second sphere
For this problem, let's use the approach of dimensional analysis. This technique is done by cancelling out like units that appear both on the numerator and the denominator side. As a result, this technique will let you know that your final answer conforms to what parameter is asked. In this case, the final answer should be in kJ. We use the conversion: 1000 cal = 4.184 kJ The solution is as follows:
<span>6.95×10</span>⁵<span> cal * 4.184 kJ/1000 cal = 2,907.88 kJ</span>