Answer:
The weight lifter would not get past this sticking point.
Explanation:
Generally torque applied on the weight is mathematically represented as
T = F z
To obtain Elbow torque we substitute 4000 N for F (the force ) and 2cm
for z the perpendicular distance
So Elbow Torque is 

To obtain the torque required we substitute 300 N for F and 30cm 
So the Required Torque is 

Now since
it mean that the weight lifter would not get past this sticking point
Answer:
Micro and radio waves.
Lower energy.
Gamma rays.
Explanation:
The electromagnetic spectrum is the range of frequencies of electromagnetic radiation and their respective wavelengths.
Ionising radiation os defined as the energy required of photons of a wave to ionize atoms, causing chemical reactions.
The energy of the wave depends on both the amplitude and the frequency. If the energy of each wavelength is a discrete packet of energy, a high-frequency wave will deliver more of these packets per unit time than a low-frequency wave. In summary, the longer the wavelength, the lower the energy to ionise.
The velocity of a wave is directly proportional to the frequency of that wave.
c = f * lambda
Where,
c = velocity of the wave
f = frequency of the wave = 1/time
Lambda = wavelength.
From the above expression, the longer the wavelength, lambda the shorter the frequency.
Examples of waves with longer wavelengths are, micro and radio waves, while radiations with shorter wavelengths like gamma rays.
Answer:
The mass of the beam is 0.074 kg
Explanation:
Given;
length of the uniform bar, = 1m = 100 cm
Set up this system with the given mass and support;
0-----------------33cm-----------------------------------100cm
↓ Δ ↓
0.15kg m
Where;
m is mass of the uniform bar
Apply the principle of moment to determine the value of "m"
sum of anticlockwise moment = sum of clockwise moment
0.15kg(33 - 0) = m(100 - 33)
0.15(33) = m(67)

Therefore, the mass of the beam is 0.074 kg
True because well it’s moving fast lol sometimes ur eyes have a hard time following its speed
Answer:
C. Both technicians A and B
Explanation:
Both technicians are absolutely correct because a functional test light is meant to light on both test point if the fuse is working fine which implies that, if the test light doesn't light on both sides then there must be a fault with the fuse. So, both technicians A and B are very correct.