Explanation:
The net force would be upwards since the kangaroo would have to overcome gravity to jump
Answer:
P = 1 (14,045 ± 0.03 ) k gm/s
Explanation:
In this exercise we are asked about the uncertainty of the momentum of the two carriages
Δ (Pₓ / Py) =?
Let's start by finding the momentum of each vehicle
car X
Pₓ = m vₓ
Pₓ = 2.34 2.5
Pₓ = 5.85 kg m
car Y
Py = 2,561 3.2
Py = 8,195 kgm
How do we calculate the absolute uncertainty at the two moments?
ΔPₓ = m Δv + v Δm
ΔPₓ = 2.34 0.01 + 2.561 0.01
ΔPₓ = 0.05 kg m
Δ
= m Δv + v Δm
ΔP_{y} = 2,561 0.01+ 3.2 0.001
ΔP_{y} = 0.03 kg m
now we have the uncertainty of each moment
P = Pₓ /
ΔP = ΔPₓ/P_{y} + Pₓ ΔP_{y} / P_{y}²
ΔP = 8,195 0.05 + 5.85 0.03 / 8,195²
ΔP = 0.006 + 0.0026
ΔP = 0.009 kg m
The result is
P = 14,045 ± 0.039 = (14,045 ± 0.03 ) k gm/s
Answer:
Explanation:
λ = wave length = 632 x 10⁻⁹
slit width a = 2 x 10⁻³ m
angular separation of central maxima
= 2 x λ /a
= 2 x 632 x 10⁻⁹ / 2 x 10⁻³
= 632 x 10⁻⁶ rad
width in m of light spot.
= 632 x 10⁻⁶ x 376000 km
= 237.632 km
Answer:
Part a)

Part b)
North of East
Explanation:
Speed of train towards East = 60 km/h
displacement towards East is given as

now it turns towards 50 degree East of North
so its distance is given as


then finally it moves towards west for 50 min

Now the total displacement of the train is given as



now total time duration of the motion is given as


now average velocity is given as


Part a)
magnitude of the average velocity is given as



Part b)
Direction of the velocity is given as


North of East
Explanation:
<u>Formula:</u>

<u>d = distance given</u>
<u>t</u><u> </u><u>=</u><u> </u><u>the amount of time </u><u>given</u>
<u>Substitute the given values into the formula for velocity</u><u>:</u>

velocity is shortened for v.
8 (distance) divided by 4 (time) equals the velocity.
<u>Solve:</u>

The velocity of the toy car equals: B. 2 m/s.