Answer:
(S)-3-methoxy-3-methylbutan-2-ol
Explanation:
In this case, we have an <u>epoxide opening in acid medium</u>. The first step then is the <u>protonation of the oxygen</u>. Then the epoxide is broken to generate the most <u>stable carbocation</u>. The nucleophile (
) will attack the carbocation generating a new bond. Finally, the oxygen is <u>deprotonated</u> to obtain an ether functional group and we will obtain the molecule <u>(S)-3-methoxy-3-methylbutan-2-ol</u>.
See figure 1
I hope it helps!
I believe the correct answer is the first option. To increase the molar concentration of the product N2O4, you should increase the pressure of the system. You cannot determine the effect of changing the temperature since we cannot tell whether it is an endothermic or an exothermic reaction. Also, decreasing the number of NO2 would not increase the product rather it would shift the equilibrium to the left forming more reactants. The only parameter we can change would be the pressure. And, since NO2 takes up more space than the product increasing the pressure would allow the reactant to collide more forming the product.
Sea turtles they leave them on the beach
166.4 g Ag grams of silver can be produced from 49.1 g of copper.
<h3>What is a mole?</h3>
A mole is a very important unit of measurement that chemists use. A mole of something means you have 602,214,076,000,000,000,000,000 of that thing, like how having a dozen eggs means you have twelve eggs.
→ 
63.55 g Cu —> 2 x 107.688 g Ag
63.55 g Cu gives 215.376 g of Ag
So, 49.1 g Cu —> 
= 166.4 g Ag
Hence, 166.4 g Ag grams of silver can be produced from 49.1 g of copper.
Learn more about moles here:
brainly.com/question/26416088
#SPJ1