Answer:
<h2>Mass of 1 Kg and 2 Kg, 1 meters apart.</h2>
Explanation:
The gravitational force is defined as

By definition, the gravitational force depends directly on the product of the masses and indirectly on the distance between the masses, which means the further they are, the less gravitational force would be. And, the greater the masses, the greater the gravitational force.
Among the options, the pair that would have the greatest gravitational force is Mass of 1 Kg and 2 Kg, with 1 meter between them.
Notice that the last choice includes the same masses but with a greater distance between them, that means it would be a weaker graviational force.
Therefore, the right answer is the second choice.
Given that,
Time = 0.5 s
Acceleration = 10 m/s²
(I). We need to calculate the speed of apple
Using equation of motion

Where, v = speed
u = initial speed
a = acceleration
t = time
Put the value into the formula


(III). We need to calculate the height of the branch of the tree from the ground
Using equation of motion

Put the value into the formula


(II). We need to calculate the average velocity during 0.5 sec
Using formula of average velocity


Where,
= final position
= initial position
Put the value into the formula


Hence, (I). The speed of apple is 5 m/s.
(II). The average velocity during 0.5 sec is 2.5 m/s
(III). The height of the branch of the tree from the ground is 1.25 m.
Answer:
with teamwork
Explanation:
you need to use team work so the right answer is C
Answer:

Explanation:
Uncertainty principle say that the position and momentum can not be measured simultaneously except one relation which is described below,

Given that the uncertainty in x is 0.1 mm.
Therefore,

Therefore, uncertainty in the transverse momentum of photon is 