Answer:
Electric field magnitude
E = K/qd
Where
K = kinetic energy of electron
d = electron distance
q = charge
Explanation:
Given the relationship between workdone and energy
Work-energy theorem:
Net workdone = Energy change
W = ∆E
In this case
W = ∆K.E
And,
∆K.E = K(final) - K(initial)
To stop the kinetic energy | K(final) = 0
K(initial) = K (given)
∆K.E = 0 - K = -K
Let the electric force on the electron has magnitude F.
And
W = -Fd = ∆K.E = -K
-Fd = -K
F = K/d .....1
The magnitude of the electric field E that can stop these electron in a distance d:
E = F/q ......2
Where q is the charge on electron.
substituting equation 1 to 2
E = (K/d)/q = K/qd
E = K/qd
Answer:
The vacuum tube was replaced with transistor.
Explanation:
- The invention of semiconductor was very useful in making solid state transistor that allowed the production of small yet faster, cheaper, and more trusted and reliable computers.
- These solid state transistor is so often used that, it nearly replaced all the use of transistor.
- This replacement took place after the invention of semiconductor in the year around 1940.
- Vacuum tubes also known as thermionic tubes are not used anymore in computers and electronics.
<span>Are programs that basically want to publicize the lives of other people sopadamente to help them</span>
The object will remain at rest
Newton's first law states that if a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep moving in a straight line at constant speed unless it is acted upon by a force.
Here net force is zero
An object with a net force of zero acting on it will remain at rest, if initially at rest, or it will maintain a constant velocity.
F=MA
Force F=0
Than Acceleration A=0
With zero Acceleration stationary object will remain at rest.
Hence Remain at rest is the correct answer
Learn more about Newton's law of motion here
brainly.com/question/25545050
#SPJ4
Answer:
C
Explanation:
This is right because that's how u describe it