The most accurate weather for the next two days would be dry warm weather or severe thunderstorms if there is an occluded front over the area.
<u>Explanation:</u>
The weather front that is created during the cyclogenesis process is an occluded front in meteorology. Cyclogenesis process is the development of extra-tropical cyclone and its intensification.
During the occurrence of this, the warm air is occluded (separated) from the center of cyclone at the surface of the earth.
The cold front rotates the storm as it intensifies and holds up the warm front. This develops an occluded front, that is the boundary which separates the new cold air mass and the older cool air mass that is already in warm front's north.
1=6, 2=8
I hope this helped
Answer:
λ1 = 0.0129m = 1.29cm
λ2 = 0.00923m = 0.92 cm
Explanation:
To find the distance between the first order bright fringe and the central peak, can be calculated by using the following formula:
(1)
m: order of the bright fringe = 1
λ: wavelength of the light = 660 nm, 470 nm
D: distance from the screen = 5.50 m
d: distance between slits = 0.280mm = 0.280 *10^⁻3 m
ym: height of the m-th fringe
You replace the values of the variables in the equation (1) for each wavelength:
For λ = 660 nm = 660*10^-9 m

For λ = 470 nm = 470*10^-9 m

Answer:
Before: 0 m/s
After: -4 m/s
Explanation:
Before: Since you and your beau started at rest, your beau initial velocity is 0 m/s.
After: Since we have to conserve momentum,
momentum before push = momentum after push.
The momentum before push = 0 (since you and your beau are at rest)
momentum after push = m₁v₁ + m₂v₂ were m₁ = your mass = 60 kg, v₁ = your velocity after push = 3 m/s, m₂ = beau's mass = 45 kg and v₂ = beau's velocity.
So, m₁v₁ + m₂v₂ = 0
m₁v₁ = -m₂v₂
v₂ = -m₁v₁/m₂ = -60 kg × 3 m/s ÷ 45 kg = -4 m/s
So beau moves with a velocity of 4 m/s in the opposite direction