Answer:
Your answer would be Ionic bond.
Answer:
2.5 moles of N₂ and 7.5 moles of H₂ entered the reaction
Explanation:
In reaction:
N₂(g) + 3 H₂(g) → 2 NH₃(g)
You can see that the stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction) requires the following amounts of reagents and are produced:
- N₂: 1 mole
- H₂: 3 moles
- NH₃: 2 moles
The following three rules can apply:
- If 2 moles of NH₃ are produced from 1 mole of N₂ by stoichiometry of the reaction, 5 moles of NH₃ from how many moles of N₂ are produced?

moles of N₂= 2.5
- If 2 moles of NH₃ are produced from 3 moles of H₂ by stoichiometry of the reaction, 5 moles of NH₃ from how many moles of H₂ are produced?

moles of H₂= 7.5
<u><em>2.5 moles of N₂ and 7.5 moles of H₂ entered the reaction</em></u>
Answer:
58.92 g EDTA
Explanation:
315.1 mL = .3151 L
M = Moles / Liter
.3151 L x <u>0.5 mol EDTA</u> x <u>374 g EDTA</u> = 58.92 g EDTA
1 L EDTA 1 mol EDTA
Answer:
339.2K
Explanation:
Using Charles law equation;
V1/T1 = V2/T2
Where;
V1 = initial volume (L)
V2 = final volume (L)
T1 = initial temperature (K)
T2 = final temperature (K)
According to the information provided in this question,
V1 = 2.97 L
V2 = 3.42 L
T1 = 21.6°C = 21.6 + 273 = 294.6K
T2 = ?
Using V1/T1 = V2/T2
2.97/294.6 = 3.42/T2
Cross multiply
2.97 × T2 = 294.6 × 3.42
2.97T2 = 1007.532
T2 = 1007.532 ÷ 2.97
T2 = 339.236
The final temperature is 339.2K
Answer:
A Valence electron are the electrons in the outermost shell or energy level of an atom.