In 8M of KNO3, there are x moles of KNO3 divided by (100/1000)L of water (because molarity is concentration, given by no. of moles divided by total volume in liters).
by changing the subject of formula, x = 0.1L × 8M = 0.8mol
given the no. of mol of KNO3, mass of KNO3 is given by no. of mol multipled by the relative molecular mass of KNO3.
mass = 0.8mol × 101.10g/mol (or whatever your periodic table says) = 80.88g
Answer:
A. O, S, Se
Explanation:
If you look up Oxygen (O), Sulfur (S) and Selenium (Se) in the periodic table, you will see that these three fall under the same column. In the periodic table, elements are arranged in rows and columns. Columns are called groups. The elements that fall under the same group share similar chemical properties.
The elements given above are all in Group VIA or group 16.
Answer: If the Sun had an even greater mass then it currently does, it would have a larger gravitational pull and since it's heat would be closer to Earth, both by magnitude and gravity, life on Earth wouldn't be possible and life on Mars would be reality. Also, when the sun would explode, it would have a larger supernova and possibly create a white dwarf (something that only happens to red supergiant stars when they die), with a gravitational force so strong it wold have two beams of light coming out it's north and south poles (like a black hole).
I hope this helps!
Answer:
See figure 1
Explanation:
In this question, we have to start with the <u>protonation of the double bond</u>. In carvone we have two double bonds, so, we have to decide first which one would be protonated.
The problem states that the <u>terminal alkene</u> is the one that would is protonated. Therefore, we have to do the <u>protonation</u> in the double bond at the bottom to produce the <u>carbocation number 1</u>. Then, a hydride shift takes place to produce the <u>carbocation number 2</u>. A continuation, an <u>elimination reaction</u> takes place to produce the <u>conjugated diene</u>. Then the diene is protonated at the <u>carbonyl group</u> and with an elimination reaction of an hydrogen in the <u>alpha carbon</u> we can obtain <u>carvacol. </u>