Answer:
![\fbox{\begin{minipage}{10em}Option A is correct\end{minipage}}](https://tex.z-dn.net/?f=%5Cfbox%7B%5Cbegin%7Bminipage%7D%7B10em%7DOption%20A%20is%20correct%5Cend%7Bminipage%7D%7D)
Step-by-step explanation:
<em>Step 1: Define significance level</em>
In this hypothesis testing problem, significance levels α is selected:
, the associated z-value from Laplace table:
Φ(
) = α - ![0.5 = 0.05 - 0.5 = -0.45](https://tex.z-dn.net/?f=0.5%20%3D%200.05%20-%200.5%20%3D%20-0.45)
=>
= ![-1.645](https://tex.z-dn.net/?f=-1.645)
<em>Step 2: Define null hypothesis (</em>
<em>) and alternative hypothesis (</em>
<em>)</em>
: rate of flu infection
= 8.3% or 8.3/100 = 0.083
: rate of flu infection
< 8.3% or 8.3/100 = 0.083
<em>Step 3: Apply the formula to check test statistic:</em>
![K = \frac{f - p}{\sqrt{p(1 - p)} } * \sqrt{n}](https://tex.z-dn.net/?f=K%20%3D%20%5Cfrac%7Bf%20-%20p%7D%7B%5Csqrt%7Bp%281%20-%20p%29%7D%20%7D%20%2A%20%5Csqrt%7Bn%7D)
with
is actual sampling percent,
is rate of flu infection of
,
is number of samples.
The null hypothesis will be rejected if ![K < z](https://tex.z-dn.net/?f=K%20%3C%20z)
<em>Step 4: Calculate the value of K and compare with </em>![z](https://tex.z-dn.net/?f=z)
We have ![-2.46 < -1.645](https://tex.z-dn.net/?f=-2.46%20%3C%20-1.645)
=>This is good evidence to reject null hypothesis.
=> The actual rate is lower. (As
states)
Hope this helps!
:)