Answer:
or
.
Explanation:
<u>Given:</u>
- Charge on the particle at origin = Q.
- Mass of the moving charged particle,

- Charge on the moving charged particle,

- Distance of the moving charged particle from first at t = 0 time,

- Speed of the moving particle,

For the moving particle to circular motion, the electrostatic force between the two must be balanced by the centripetal force on the moving particle.
The electrostatic force on the moving particle due to the charge Q at origin is given by Coulomb's law as:

where,
is the Coulomb's constant having value 
The centripetal force on the moving particle due to particle at origin is given as:

For the two forces to be balanced,
Write an equation to calculate the force between two objects if the product of their charges is 10.0 × 10-4 C. (Note: Use the variable R for the distance between the charges.)
F = 900 ÷_________
Answer:
The objects outside the reference frame aren't moving. It appears this way since the vehicle you are inside is moving, but unless the objects are people, animals, or other vehicles, the objects aren't moving.
<span>The ball clears by 11.79 meters
Let's first determine the horizontal and vertical velocities of the ball.
h = cos(50.0)*23.4 m/s = 0.642788 * 23.4 m/s = 15.04 m/s
v = sin(50.0)*23.4 m/s = 0.766044 * 23.4 m/s = 17.93 m/s
Now determine how many seconds it will take for the ball to get to the goal.
t = 36.0 m / 15.04 m/s = 2.394 s
The height the ball will be at time T is
h = vT - 1/2 A T^2
where
h = height of ball
v = initial vertical velocity
T = time
A = acceleration due to gravity
So plugging into the formula the known values
h = vT - 1/2 A T^2
h = 17.93 m/s * 2.394 s - 1/2 9.8 m/s^2 (2.394 s)^2
h = 42.92 m - 4.9 m/s^2 * 5.731 s^2
h = 42.92 m - 28.0819 m
h = 14.84 m
Since 14.84 m is well above the crossbar's height of 3.05 m, the ball clears. It clears by 14.84 - 3.05 = 11.79 m</span>
M1 v1 = (m1 + m2)v2.
All of the exponents should be lowered to the bottom right of the letters.