Explanation:
She is passionate about architecture, typography, and black & white film ... Since moving to Texas, I've heard a lot of people say, "If you don't like ... Oc, 3.74, 56, 80 ... Not only does the weather have to be clear to pour the concrete, but it ... system that goes within the slab) is complete, any additional rain will
Answer:
As the asteroid falls closer to the Earth's surface its <u>Gravitational</u> <u>Potential</u> energy <em>decreases</em> and its <u>Kinetic</u> energy <em>increases</em>.
Answer:
The strength coefficient is
and the strain-hardening exponent is 
Explanation:
Given the true strain is 0.12 at 250 MPa stress.
Also, at 350 MPa the strain is 0.26.
We need to find
and the
.

We will plug the values in the formula.

We will solve these equation.
plug this value in 

Taking a natural log both sides we get.

Now, we will find value of 

So, the strength coefficient is
and the strain-hardening exponent is
.
Answer:
Information such as tolerance and scale can be found in the <u>title block</u> of an engineering drawing
Explanation:
The title block of an engineering drawing can normally be found on the lower right and corner of an engineering drawing and it carries the information that are used to specify details that are specific the drawing including, the name of the project, the name of the designer, the name of the client, the sheet number, the drawing tolerance, the scale, the issue date, and other relevant information, required to link the drawing with the actual structure or item
Answer:
σ = 391.2 MPa
Explanation:
The relation between true stress and true strain is given as:
σ = k εⁿ
where,
σ = true stress = 365 MPa
k = constant
ε = true strain = Change in Length/Original Length
ε = (61.8 - 54.8)/54.8 = 0.128
n = strain hardening exponent = 0.2
Therefore,
365 MPa = K (0.128)^0.2
K = 365 MPa/(0.128)^0.2
k = 550.62 MPa
Now, we have the following data:
σ = true stress = ?
k = constant = 550.62 MPa
ε = true strain = Change in Length/Original Length
ε = (64.7 - 54.8)/54.8 = 0.181
n = strain hardening exponent = 0.2
Therefore,
σ = (550.62 MPa)(0.181)^0.2
<u>σ = 391.2 MPa</u>