1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brrunno [24]
3 years ago
13

What’s the answer y’all

Mathematics
1 answer:
Ilia_Sergeevich [38]3 years ago
7 0

Answer:

C

Step-by-step explanation:

If you add all of the numbers together and divide by the total (15) you would get 11.333

(7+8+8+9+11+11+12+12+12+12+12+13+14+14+15) divided by 15 equals 11.3333

You might be interested in
-5/8 ÷ 9/10<br><br> A. -25/36<br><br> B. -9/16<br><br> C. -45/80<br><br> D. -1/36
Oduvanchick [21]

A. -25/36

If There Is Any Other Fraction problems That You Need Help With, Go To This Site http://www.calculatorsoup.com/calculators/math/fractions.php

5 0
2 years ago
Read 2 more answers
I need help!!! Idk what the answer is
yanalaym [24]

Translations, reflections, and rotations preserve congruency. Dilations do not?

3 0
3 years ago
Whats the 11th term of 2,6,18,54
Natalija [7]
The 11th term would be 39,366.

The rule for this sequence is 3n (n times 3). Simplying multiplying by 3 until you get to the 11th term (54 * 3 * 3 * 3 * 3 * 3 * 3), would give you this answer.

I hope this helps!!
8 0
3 years ago
Alishia rides her bike 45.3 km in 143 minutes. what is her average speed in kilometers per hour?
Nady [450]

Average speed of Alishia is 19 kilometers per hour

Average speed is calculated by dividing the total distance that something has traveled by the total amount of time it took it to travel that distance. Speed is how fast something is going at a particular moment. Average speed measures the average rate of speed over the extent of a trip

Given :

Distance = 45.3 km

Time taken = 143 minutes = 143/60 =2.384 hours

∴ Average speed = 45.3/2.384 = 19 kilometers per hour

Thus the average speed of Alishia is 19 kilometers per hour.

Learn more about Average speed here :

brainly.com/question/17277454

#SPJ4

8 0
1 year ago
Solve for x<br> 6/x^2+2x-15 +7/x+5 =2/x-3
timama [110]

Answer:

x = ((-5)^(1/3) (2140 - 9 sqrt(56235))^(2/3) - 17 (-5)^(2/3))/(15 (2140 - 9 sqrt(56235))^(1/3)) - 1/3 or x = 1/15 (17 5^(2/3) (-1/(2140 - 9 sqrt(56235)))^(1/3) - (-5)^(1/3) (9 sqrt(56235) - 2140)^(1/3)) - 1/3 or x = -1/3 - 17/(3 (10700 - 45 sqrt(56235))^(1/3)) - (2140 - 9 sqrt(56235))^(1/3)/(3 5^(2/3))

Step-by-step explanation:

Solve for x:

6/x^2 + (2 x - 8)/(x + 5) = 2/x - 3

Bring 6/x^2 + (2 x - 8)/(x + 5) together using the common denominator x^2 (x + 5). Bring 2/x - 3 together using the common denominator x:

(2 (x^3 - 4 x^2 + 3 x + 15))/(x^2 (x + 5)) = (2 - 3 x)/x

Cross multiply:

2 x (x^3 - 4 x^2 + 3 x + 15) = x^2 (2 - 3 x) (x + 5)

Expand out terms of the left hand side:

2 x^4 - 8 x^3 + 6 x^2 + 30 x = x^2 (2 - 3 x) (x + 5)

Expand out terms of the right hand side:

2 x^4 - 8 x^3 + 6 x^2 + 30 x = -3 x^4 - 13 x^3 + 10 x^2

Subtract -3 x^4 - 13 x^3 + 10 x^2 from both sides:

5 x^4 + 5 x^3 - 4 x^2 + 30 x = 0

Factor x from the left hand side:

x (5 x^3 + 5 x^2 - 4 x + 30) = 0

Split into two equations:

x = 0 or 5 x^3 + 5 x^2 - 4 x + 30 = 0

Eliminate the quadratic term by substituting y = x + 1/3:

x = 0 or 30 - 4 (y - 1/3) + 5 (y - 1/3)^2 + 5 (y - 1/3)^3 = 0

Expand out terms of the left hand side:

x = 0 or 5 y^3 - (17 y)/3 + 856/27 = 0

Divide both sides by 5:

x = 0 or y^3 - (17 y)/15 + 856/135 = 0

Change coordinates by substituting y = z + λ/z, where λ is a constant value that will be determined later:

x = 0 or 856/135 - 17/15 (z + λ/z) + (z + λ/z)^3 = 0

Multiply both sides by z^3 and collect in terms of z:

x = 0 or z^6 + z^4 (3 λ - 17/15) + (856 z^3)/135 + z^2 (3 λ^2 - (17 λ)/15) + λ^3 = 0

Substitute λ = 17/45 and then u = z^3, yielding a quadratic equation in the variable u:

x = 0 or u^2 + (856 u)/135 + 4913/91125 = 0

Find the positive solution to the quadratic equation:

x = 0 or u = 1/675 (9 sqrt(56235) - 2140)

Substitute back for u = z^3:

x = 0 or z^3 = 1/675 (9 sqrt(56235) - 2140)

Taking cube roots gives (9 sqrt(56235) - 2140)^(1/3)/(3 5^(2/3)) times the third roots of unity:

x = 0 or z = (9 sqrt(56235) - 2140)^(1/3)/(3 5^(2/3)) or z = -((-1)^(1/3) (9 sqrt(56235) - 2140)^(1/3))/(3 5^(2/3)) or z = ((-1)^(2/3) (9 sqrt(56235) - 2140)^(1/3))/(3 5^(2/3))

Substitute each value of z into y = z + 17/(45 z):

x = 0 or y = (9 sqrt(56235) - 2140)^(1/3)/(3 5^(2/3)) - (17 (-1)^(2/3))/(3 (5 (2140 - 9 sqrt(56235)))^(1/3)) or y = 17/3 ((-1)/(5 (2140 - 9 sqrt(56235))))^(1/3) - ((-1)^(1/3) (9 sqrt(56235) - 2140)^(1/3))/(3 5^(2/3)) or y = ((-1)^(2/3) (9 sqrt(56235) - 2140)^(1/3))/(3 5^(2/3)) - 17/(3 (5 (2140 - 9 sqrt(56235)))^(1/3))

Bring each solution to a common denominator and simplify:

x = 0 or y = ((-5)^(1/3) (2140 - 9 sqrt(56235))^(2/3) - 17 (-5)^(2/3))/(15 (2140 - 9 sqrt(56235))^(1/3)) or y = 1/15 (17 5^(2/3) ((-1)/(2140 - 9 sqrt(56235)))^(1/3) - (-5)^(1/3) (9 sqrt(56235) - 2140)^(1/3)) or y = -(2140 - 9 sqrt(56235))^(1/3)/(3 5^(2/3)) - 17/(3 (5 (2140 - 9 sqrt(56235)))^(1/3))

Substitute back for x = y - 1/3:

x = 0 or x = 1/15 (2140 - 9 sqrt(56235))^(-1/3) ((-5)^(1/3) (2140 - 9 sqrt(56235))^(2/3) - 17 (-5)^(2/3)) - 1/3 or x = 1/15 (17 5^(2/3) (-1/(2140 - 9 sqrt(56235)))^(1/3) - (-5)^(1/3) (9 sqrt(56235) - 2140)^(1/3)) - 1/3 or x = -1/3 - 1/3 5^(-2/3) (2140 - 9 sqrt(56235))^(1/3) - 17/3 (5 (2140 - 9 sqrt(56235)))^(-1/3)

5 (2140 - 9 sqrt(56235)) = 10700 - 45 sqrt(56235):

x = 0 or x = ((-5)^(1/3) (2140 - 9 sqrt(56235))^(2/3) - 17 (-5)^(2/3))/(15 (2140 - 9 sqrt(56235))^(1/3)) - 1/3 or x = 1/15 (17 5^(2/3) (-1/(2140 - 9 sqrt(56235)))^(1/3) - (-5)^(1/3) (9 sqrt(56235) - 2140)^(1/3)) - 1/3 or x = -1/3 - (2140 - 9 sqrt(56235))^(1/3)/(3 5^(2/3)) - 17/(3 (10700 - 45 sqrt(56235))^(1/3))

6/x^2 + (2 x - 8)/(x + 5) ⇒ 6/0^2 + (2 0 - 8)/(5 + 0) = ∞^~

2/x - 3 ⇒ 2/0 - 3 = ∞^~:

So this solution is incorrect

6/x^2 + (2 x - 8)/(x + 5) ≈ -3.83766

2/x - 3 ≈ -3.83766:

So this solution is correct

6/x^2 + (2 x - 8)/(x + 5) ≈ -2.44783 + 1.13439 i

2/x - 3 ≈ -2.44783 + 1.13439 i:

So this solution is correct

6/x^2 + (2 x - 8)/(x + 5) ≈ -2.44783 - 1.13439 i

2/x - 3 ≈ -2.44783 - 1.13439 i:

So this solution is correct

The solutions are:

Answer:  x = ((-5)^(1/3) (2140 - 9 sqrt(56235))^(2/3) - 17 (-5)^(2/3))/(15 (2140 - 9 sqrt(56235))^(1/3)) - 1/3 or x = 1/15 (17 5^(2/3) (-1/(2140 - 9 sqrt(56235)))^(1/3) - (-5)^(1/3) (9 sqrt(56235) - 2140)^(1/3)) - 1/3 or x = -1/3 - 17/(3 (10700 - 45 sqrt(56235))^(1/3)) - (2140 - 9 sqrt(56235))^(1/3)/(3 5^(2/3))

4 0
3 years ago
Other questions:
  • What is the place value of 7 in 506,087
    14·2 answers
  • Please help, will give brainliest to first
    10·2 answers
  • The length of a rectangle is 5 cm more than the width. The perimeter is 50 cm. Find the length and width.
    6·1 answer
  • Can 5 qt 1 pt of fruit punch and 3 qt 1pt of ginger ale be poured into a 2 gal container with out it over flowing
    15·1 answer
  • 1.625 round to the nearest tenth?need help
    7·2 answers
  • Can u help me with my work don’t send a link !!
    9·1 answer
  • Write the following linear function in slope intercept form.
    9·1 answer
  • Mrs. Soto invested in a certificate of deposit that pays 8% interest. Her investment was $325. How much interest will she receiv
    12·2 answers
  • A circle has a radius of. An arc in this circle has a central angle of
    12·1 answer
  • Place
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!