An exchange reaction consists of both synthesis and decomposition reactions.
Here’s a complex example: AB + CD → AC + BD.
Another example might be: AB + CD → AD + BC.
<u>Answer:</u> The value of
for the net reaction is 
<u>Explanation:</u>
The given chemical equations follows:
<u>Equation 1:</u> 
<u>Equation 2:</u> 
The net equation follows:
As, the net reaction is the result of the addition of first equation and the second equation. So, the equilibrium constant for the net reaction will be the multiplication of first equilibrium constant and the second equilibrium constant.
The value of equilibrium constant for net reaction is:

We are given:


Putting values in above equation, we get:

Hence, the value of
for the net reaction is 
Answer:

Explanation:
Given
The data in the table
Required
Follow the steps appended to the question;
Step 1: Calculate the Mean or Average
Mean = Summation of lengths divided by number of teams;



Step 2: Get The Range



Step 3: Divide Range by 2



Step 4: Determine the Precision

Substitute 2.70 for Average and 0.1 for Approximate Range

Flame (fire) is the effect of a chemical reaction that produces visible light and heat. The chemical reaction is going on in the substance being burned.. Thats why coals glow and flames seem to leap into the air.
<span>If your reaction does not have a flame, then either it is not producing visible light or the reaction does not occur in the air above the substance.</span>