Answer:
neq N2O4 = 0.9795 mol.....P = 0.5 atm; T = 25°C
Explanation:
ni change eq.
N2O4 1 1 - x 0.8154.....P = 1 atm; T = 25°C
NO2 0 0 + x x
∴ x = neq = Peq.V / R.T.....ideal gas mix
if P = 0.5 atm, T = 25°C; assuming: V = 1 L
⇒ x = neq = ((0.5 atm)(1 L))/((0.082 atm.L/K.mol)(298 K))
⇒ x = neq = 0.0205 mol
⇒ neq N2O4 = 1 - x = 1 - 0.0205 = 0.9795 mol
Answer:
The new temperature of the nitrogen gas is 516.8 K or 243.8 C.
Explanation:
Gay-Lussac's law indicates that, as long as the volume of the container containing the gas is constant, as the temperature increases, the gas molecules move faster. Then the number of collisions with the walls increases, that is, the pressure increases. That is, the pressure of the gas is directly proportional to its temperature.
Gay-Lussac's law can be expressed mathematically as follows:
Where P = pressure, T = temperature, K = Constant
You want to study two different states, an initial state and a final state. You have a gas that is at a pressure P1 and at a temperature T1 at the beginning of the experiment. By varying the temperature to a new value T2, then the pressure will change to P2, and the following will be fulfilled:

In this case:
- P1= 2 atm
- T1= 50 C= 323 K (being 0 C= 273 K)
- P2= 3.2 atm
- T2= ?
Replacing:

Solving:


T2= 516.8 K= 243.8 C
<u><em>The new temperature of the nitrogen gas is 516.8 K or 243.8 C.</em></u>
Answer:
THE VOLUME OF THE NITROGEN GAS AT 2.5 MOLES , 1.75 ATM AND 475 K IS 55.64 L
Explanation:
Using the ideal gas equation
PV = nRT
P = 1.75 atm
n = 2.5 moles
T = 475 K
R = 0.082 L atm/mol K
V = unknown
Substituting the variables into the equation we have:
V = nRT / P
V = 2.5 * 0.082 * 475 / 1.75
V = 97.375 / 1.75
V = 55.64 L
The volume of the 2.5 moles of nitrogen gas exerted by 1.75 atm at 475 K is 55.64 L
Less friction to stop the wheel from turning
Answer:
Igneous Rocks: form by crystallizing melted material (magma).
Explanation:
They can form either on the surface (extrusive igneous rocks), or deep in the crust (intrusive or plutonic igneous rocks).