<span>N2 + 3H2 → 2 </span>NH3<span> from bal. rxn., 2 moles of </span>NH3<span> are formed per 3 moles of </span>H2, 2:3 moleH2<span>: 3.64 </span>g<span>/ 2 </span>g<span>/mole </span>H2<span>= 1.82 1.82 moles </span>H2<span> x 2/3 x 17
</span>
Answer:
bent
Explanation:
The chlorite ion has been pictured in the image attached with its two main resonance contributors.
The ion has four regions of electron density as shown. On the basis of the VSEPR theory, we expect a tetrahedral geometry.
However, the ion is bent due to the effect of the lone pairs on chlorine which is the central atom in the ion. This distorts the bond angle of the ion hence the ion has a bent molecular geometry.
Answer:
When hydrogen is passed over hot ferric oxide (FeO) hydrogen reacts with oxygen present in the compound and forms water (H2O) and pure Iron
Explanation:
A student builds a model of a race car. The scale is 1:15. In the scale model, the car is 8 cm tall. How tall is the actual car?
<h2>Answers:</h2>
<h3>A. 120 cm</h3>
#CarryOnLearning
Answer:
[HI] = 0.7126 M
Explanation:
Step 1: Data given
Kc = 54.3
Temperature = 703 K
Initial concentration of H2 and I2 = 0.453 M
Step 2: the balanced equation
H2 + I2 ⇆ 2HI
Step 3: The initial concentration
[H2] = 0.453 M
[I2] = 0.453 M
[HI] = 0 M
Step 4: The concentration at equilibrium
[H2] = 0.453 - X
[I2] = 0.453 - X
[HI] = 2X
Step 5: Calculate Kc
Kc = [Hi]² / [H2][I2]
54.3 = 4x² / (0.453 - X(0.453-X)
X = 0.3563
[H2] = 0.453 - 0.3563 = 0.0967 M
[I2] = 0.453 - 0.3563 = 0.0967 M
[HI] = 2X = 2*0.3563 = 0.7126 M