It is endothermic because heat energy is supplied to make the water of crystallization evaporate and make the compound anhydrous.
Answer:
The answer to your question is m = 4.7 kg
Explanation:
Data
Ice Water
mass = ? mass = 711 g
T₁ = -13°C T₁ = 87°C
T₂ = 10°C T₂ = 10°C
Ch = 2090 J/kg°K Cw = 4180 J/kg°K
Process
1.- Convert temperature to kelvin
T₁ = 273 + (-13) = 260°K
T₁ water = 87 + 273 = 360 °K
T₂ = 10 + 273 = 283°K
2.- Write the equation of interchange of heat
- Heat lost = Heat absorbed
- mwCw(T₂ - T₁) = miCi(T₂ - T₁)
-Substitution
- 0.711(4180)(10 - 87) = m(2090)(10 - (-13))
- Simplification
228842.46 = 48070m
m = 228842.46/48070
-Result
m = 4.7 kg
By itself, i don’t think so.
though, paired with a hydrogen bond, it is.
If i’m wrong, please feel free to let me know :)
The correct option is B. To increase the production of ammonia, you have to increase the pressure of the system. Increase in pressure will result in increased production of ammonia because this will drive the chemical reaction forward.