Answer:
1. E x 4πr² = ( Q x r³) / ( R³ x ε₀ )
Explanation:
According to the problem, Q is the charge on the non conducting sphere of radius R. Let ρ be the volume charge density of the non conducting sphere.
As shown in the figure, let r be the radius of the sphere inside the bigger non conducting sphere. Hence, the charge on the sphere of radius r is :
Q₁ = ∫ ρ dV
Here dV is the volume element of sphere of radius r.
Q₁ = ρ x 4π x ∫ r² dr
The limit of integration is from 0 to r as r is less than R.
Q₁ = (4π x ρ x r³ )/3
But volume charge density, ρ = 
So, 
Applying Gauss law of electrostatics ;
∫ E ds = Q₁/ε₀
Here E is electric field inside the sphere and ds is surface element of sphere of radius r.
Substitute the value of Q₁ in the above equation. Hence,
E x 4πr² = ( Q x r³) / ( R³ x ε₀ )
Unlike a ball, an atom doesn't have a fixed radius. The radius of an atom can only be found by measuring the distance between the nuclei of two touching atoms, and then halving that distance... Does that answer your question?
Answer: 3.75 m
Explanation:
5 squirts in 1 second
So, 1 squirt in 1/5 second which is 0.2 second.
The difference in timing of two consecutive squirt is 0.2 second, so
time (t) = 0.2 s.
speed (s) = 15 m/s
Distance of separation (d) = ?
Now, formula for distance is
d = s × t
d = 15 × 0.2
d = 3.75 m
Answer:

Explanation:
The magnitude of the magnetic force is

To find the angle, we make
subject of the formula



Answer:
Change/ Potential
Explanation:
Work is the amount of energy required to perform an action that is for a force to cause a displacement.
From work-energy theorem, work done by body is equal to change in its kinetic energy.
Work of gravity is basically the potential energy stored in the body due to gravity. From the law of conservation of mechanical energy, increased kinetic energy comes from the change of the potential energy of the stone.