Mass of MnO2 = 25 g
The reaction would be 3MnO2 + 4Al --> 3Mn(s) + 2Al2O3
Molar mass of Al = 26.982 g/mol
Molar mass of MnO2 = 54.938 + 2(15.999) = 86.936 g/mol
Calculating the moles = 25 / 86.936 = 0.2876 mol.
Mole ratio MnO2 and Al considering the equation = 3 mol of MnO : 4 mol of Al
Calculating the moles of Al = 0.2876 mol MnO2 x (4 mol of Al / 3 mol of MnO)
Number of moles of Al = 0.3834
Getting the mass in grams as asked = 0.3834 mol x 26.982 g/mol = 10.34 grams.
If you count the number of electrons (small dots), you have the atomic number. In this case you have 11 so this atom is a sodium atom. Sodium has 1 valence electron (electron on the outer shell) and chlorine has 7. This means that if sodium gave one electron away and chlorine would obtain one electron, they would both have the (ideal) noble gas conformation (full outer shell).
Yes, it mixes it and has vitamins in the tea.
Answer:
54 days
Explanation:
We have to use the formula;
0.693/t1/2 =2.303/t log Ao/A
Where;
t1/2= half-life of phosphorus-32= 14.3 days
t= time taken for the activity to fall to 7.34% of its original value
Ao=initial activity of phosphorus-32
A= activity of phosphorus-32 after a time t
Note that;
A=0.0734Ao (the activity of the sample decreased to 7.34% of the activity of the original sample)
Substituting values;
0.693/14.3 = 2.303/t log Ao/0.0734Ao
0.693/14.3 = 2.303/t log 1/0.0734
0.693/14.3 = 2.6/t
0.048=2.6/t
t= 2.6/0.048
t= 54 days
Answer:
a) T
b) T
c) F
d) F
e) T
f) T
g) T
h) F
I) F
j) F
k) F
l) F
Explanation:
The w/v concentration is obtained from, mass/volume. Hence;
%w/v= 50/1000= 5%
In the %w/w we have;
25g/100 g = 25% w/w
In combustion reaction, energy is given out hence it is exothermic.
Neutralization reaction yields a salt and water
% by mass of carbon is obtained from;
8× 12/114 × 100 = 84.1%
All the ionic substances mentioned have very low solubility in water.
One mole of a substance contains the Avogadro's number of each atom in the compound.
There are two iron atoms so one mole contains 2× 55.85 g of iron.
Some sulphates such as BaSO4 are insoluble in water.
Halides are soluble in water hence NaI is soluble in water.
The equation does not balance with the given coefficients because the number of atoms of each element on both sides differ.
The equation represents a decomposition of calcium carbonate as written.