The reactivities of the halogens decrease down the group ( At < I < Br < Cl < F). This is due to the fact that atomic radius increases in size with an increase of electronic energy levels. This lessens the attraction for valence electrons of other atoms, decreasing reactivity.
We are given with the equilibrium constant of acid, HF and is asked to calculate the pH of 0.30 M NaF solution. The formula to be followed is
Ka = [H+][F-]/[HF]Ka = 7.2 x 10 -4 = x^2/[0.3-x]x = [H+]= pH = -log (H+) = 1.84
The correct option is this: EFFUSION BECAUSE THERE IS A MOVEMENT OF A GAS THROUGH A SMALL OPENING INTO A LARGER VOLUME.
Effusion refers to the movement of gas particles through a small hole. According to Graham's law, the effusion rate of a gas is inversely proportional to the square root of the mass of its particles.
Answer:
Noble gases
Explanation:
The noble gases are non-metals that requires the highest amount of energy to remove an electron from their shells.
The reason for this difficult is that their electronic configuration confers a stable configuration them.
- The ionization energy is the energy required to remove the most loosely held electrons in an atom.
- Due to the special stability of noble gases, it is very difficult to remove electrons from an atom of noble gases.
Answer:
A methane molecule is made from one carbon atom and four hydrogen atoms. Carbon has a mass of 12.011 u and hydrogen has a mass of 1.008 u. This means that the mass of one methane molecule is 12.011 u + (4 × 1.008u), or 16.043 u. This means that one mole of methane has a mass of 16.043 grams.
メタン分子は、1つの炭素原子と4つの水素原子から作られています。炭素の質量は12.011uで、水素の質量は1.008uです。これは、1つのメタン分子の質量が12.011 u +(4×1.008u)、つまり16.043uであることを意味します。これは、1モルのメタンの質量が16.043グラムであることを意味します。^>^