This reaction only occurs at high temperatures and in the presence of a metal-based catalyst (nickel). And the H2O is in the form of steam (due to the high temperature)
Answer:
0.0038 M
Explanation:
Hardness of the water is generally due to the presence of
in water.
At equivalence point
Moles of
= Moles of EDTA
Considering

Given that:



So,


Answer:
The two variables affecting the rate of diffusion are the concentration gradient and size of the molecule. Concentration gradient: The movement of the substance is generally along the concentration gradient of the solute and it moves from a region of its higher concentration to a region of its lower concentration.
Answer:
In chemistry, a symbol is an abbreviation for a chemical element. Symbols for chemical elements normally consist of one or two letters from the Latin alphabet and are written with the first letter capitalised.
Earlier symbols for chemical elements stem from classical Latin and Greek vocabulary. For some elements, this is because the material was known in ancient times, while for others, the name is a more recent invention. For example, Pb is the symbol for lead (plumbum in Latin); Hg is the symbol for mercury (hydrargyrum in Greek); and He is the symbol for helium (a new Latin name) because helium was not known in ancient Roman times. Some symbols come from other sources, like W for tungsten (Wolfram in German) which was not known in Roman times.
Explanation:
The hydrogen bond is a comparatively weak interaction between a proton hop and an electronegative atom present in a molecule. The hydrogen bond plays a very important role for the determination of state of a compound like gaseous, liquid or solid. The strength of the hydrogen bond depends on the close distance between the participants i.e. the electronegative atom and proton hop. There remains strong hydrogen bond between the two water molecules which is expressed as O....H. The distance of the hydrogen bond is 1.8A° formed between each proton hops of two neighboring water molecules. The hydrogen bond interaction is shown in the figure.