The work done by the machine is equal to the product between the force applied and the distance over which the force is applieds, so in this case:

And the power of the machine is equal to the ratio between the work done by the machine and the time taken:
Answer:
1 / 2 m v^2 = L m g (1 - cos θ)
This is the KE due to the pendulum falling from a 25 deg displacement
v^2 = 2 L g (1 - cos 25) = 2 * 2 * 9.8 (1 - .906) = 3.67 m^2/s^2
v = 1.92 m/s this is the speed due to an initial displacement of 25 deg
Its speed at the bottom would then be
1.92 + 1.2 = 3.12 m/s since it gains 1.92 m/s from its initial displacement
Answer:
Flip the cell.
Explanation:
This reverses direction of energy transfer.
Alternatively, flip ammeters and voltmeters to give negative readings.
what do penguins eat for lunch?
Ice-burgers!
Answer:
110 m
Explanation:
Draw a free body diagram of the car. The car has three forces acting on it: normal force up, weight down, and friction to the left.
Sum of the forces in the y direction:
∑F = ma
N − mg = 0
N = mg
Sum of the forces in the x direction:
∑F = ma
-F = ma
-Nμ = ma
Substitute:
-mgμ = ma
-gμ = a
Given μ = 0.40:
a = -(9.8 m/s²) (0.40)
a = -3.92 m/s²
Given that v₀ = 30 m/s and v = 0 m/s:
v² = v₀² + 2aΔx
(0 m/s)² = (30 m/s)² + 2 (-3.9s m/s²) Δx
Δx ≈ 110 m
Hello!!
For the maximum height the final velocity is zero, <u>because can't up more.</u>
Then, use the formula:
V = Vi + gt
Replacing, we have:
0 m/s = 5,3 m/s + (-9,8 m/s² * t)
0 m/s - 5,3 m/s = -9,8 m/s² * t
(-5,3 m/s) / -9,8 m/s² = t
t = 0,54 s
The time it will take to reach the maximum height is <u>0,54 seconds.</u>