Answer:
The correct option is D
Explanation:
This question can be better understood when discussed using the Newton's first law of motion which states that an object would continue to move with a uniform speed (in a straight line) unless acted upon by an external force. What happens here (in the question) is that the bike rider would have continued moving at a constant speed (to the right) if not for the opposing force of the wind that acted against her (to the left). <u>This wind/force would cause her speed to reduce or slow down (as posited by the law)</u>.
Answer:
Transverse
Explanation:
There are two types of waves, according to the direction of their oscillation:
- Transverse waves: in a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. Examples of transverse waves are electromagnetic waves
- Longitudinal waves: in a longitudinal wave, the direction of the oscillation is parallel to the direction of motion of the wave. Examples of longitudinal waves are sound waves.
Light waves corresponds to the visible part of the electromagnetic spectrum, which includes all the different types of electromagnetic waves (which consist of oscillations of electric and magnetic fields that are perpendicular to the direction of propagation of the wave): therefore, they are transverse waves.
The correct answer is
C. reduce the friction between its moving parts
In fact, by reducing the friction between the moving parts of the machine, it is possible to reduce the energy wasted due to this friction; therefore, more input energy is converted into useful work, and this will improve the efficiency of the machine.