Density = Mass/Volume
So, given mass = 20 g and volume = 40 cm^3
By substituting in above equation, Density = 20/40 = 0.5 g/cm^3
Hope it helps.
Answer:
x ’= 368.61 m, y ’= 258.11 m
Explanation:
To solve this problem we must find the projections of the point on the new vectors of the rotated system θ = 35º
x’= R cos 35
y’= R sin 35
The modulus vector can be found using the Pythagorean theorem
R² = x² + y²
R = 450 m
we calculate
x ’= 450 cos 35
x ’= 368.61 m
y ’= 450 sin 35
y ’= 258.11 m
Answer:
He is warmed up now
Explanation:
His muscles are better and stretched now
When a car hits you in a rear end collision, the car initially has a momentum going in one direction. This causes your car to move in the same direction that car was moving even if you were at rest. So, for conservation of momentum, you initially have momentum going in the east direction for example, after the collision, you will have a change in momentum which causes you to have a velocity in the west direction. This is because you are initially at rest and then there is a sudden change in velocity so when you speed up, that momentum causes you to move backwards. If you don't have a properly adjusted neckrest you could may experience whiplash.
Answer:
W = 222 N.
Explanation:
The qiestion says" If the acceleration of gravity on the surface of the planet Mercury is 3.7 m / s2, then what would be the weight of a person with mass 60 kg on its surface?
"
Mass of the person, m = 60 kg
The acceleration due to gravity on the surface of gravity is 3.7 m/s²
We need to find the weight of a person on the surface of Mercury.
Weight of an object is given by :
W = mg
So,
W = 60 kg × 3.7 m/s²
W = 222 N
Hence, the person will weigh 2222 N on the surface of Moon.