Answer:
D) 763 nm
Explanation:
Calculation for the wavelength of light
Using this formula
Wavelength of light=Delta Y*Distance / Length
Where,
Delta Y represent the 2nd order bright fringe
Length represent the distance between both the slits and the screen
Distance represent the Distance between the slits
Let note that cm to m = (4.2) x 10^-2 and mm to m= ( 0.0400x 10^-3)
Now Let plug in the formula
Wavelength of light=[(4.2 x 10^-2m)(0.0400 x 10^-3m) / 2(1.1m)]*10^-7 meters
Wavelength of light=[(0.042m) (0.0004m)/2.2m]*10^-7 meters
Wavelength of light =(0.0000168m/2.2m)*10^-7 meters
Wavelength of light =7.63 *10^-7 meters
Wavelength of light =763 nm
Therefore the Wavelength of light will be 763 nm
Answer:
The frequency is 302.05 Hz.
Explanation:
Given that,
Speed = 18.0 m/s
Suppose a train is traveling at 30.0 m/s relative to the ground in still air. The frequency of the note emitted by the train whistle is 262 Hz .
We need to calculate the frequency
Using formula of frequency

Where, f = frequency
v = speed of sound
= speed of passenger
= speed of source
Put the value into the formula


Hence, The frequency is 302.05 Hz.
Answer:
a) 
b) 
Explanation:
Given:
String vibrates transversely fourth dynamic, thus n = 4
mass of the string, m = 13.7 g = 13.7 × 10⁻¹³ kg
Tension in the string, T = 8.39 N
Length of the string, L = 1.87 m
a) we know

where,
= wavelength
on substituting the values, we get

or

b) Speed of the wave (v) in the string is given as:

also,

equating both the formula for 'v' we get,

on substituting the values, we get

or

or

Answer:

Explanation:
We are given that
Mass,
Radius,r=0.8 m

Height,h=2.9 m
We have to find the angular acceleration of the cylinder.
According to question


Where



Substitute the value


Where 


Angular acceleration,
Answer:
Dont know if this is right but i say C
Explanation: