2Ca3(PO4)2 + 6SiO2 + 10C ---> P4 + 6CaSiO3 + 10CO
1 mole of Ca3(PO4)2 = 310g
1 mole of P4 = 124g
according to the reaction:
2*310g Ca3(PO4)2----------------124g P4
x g Ca3(PO4)2 ------------------------ 30g P4
x = 150g Ca3(PO4)2
so, your answer is good
the process goes like this.
1.cells
2.tissues
3.organs
4.organ systems
5.organisms
tissues are grouped to form organs.
I hope this helps.
Answer:
Explanation:
The octet rule does not always refer to a stable arrangement of eight valence electrons because there are some element that do not have eight valence electrons yet they are stable. for example;
i) Helium, It has two valence electrons and it is a stable gas.
ii) Boron triflouride (BF3); it has six valence electrons (deficit valence electron) yet it is also stable.
iii) Phosphorus pentachloride (PCl5); it has more than eight valence electron and it is also stable.
For these few reasons it is not always advisable to say octet arrangement refer to stable eight valence electrons.
Explanation:
The given reaction is as follows.

Hence, number of moles of NaOH are as follows.
n = 
= 0.005 mol
After the addition of 25 ml of base, the pH of a solution is 3.62. Hence, moles of NaOH is 25 ml base are as follows.
n = 
= 0.0025 mol
According to ICE table,

Initial: 0.005 mol 0.0025 mol 0 0
Change: -0.0025 mol -0.0025 mol +0.0025 mol
Equibm: 0.0025 mol 0 0.0025 mol
Hence, concentrations of HA and NaA are calculated as follows.
[HA] = 
[NaA] = 
![[A^{-}] = [NaA] = \frac{0.0025 mol}{V}](https://tex.z-dn.net/?f=%5BA%5E%7B-%7D%5D%20%3D%20%5BNaA%5D%20%3D%20%5Cfrac%7B0.0025%20mol%7D%7BV%7D)
Now, we will calculate the
value as follows.
pH = 
![pK_{a} = pH - log \frac{[A^{-}]}{[HA]}](https://tex.z-dn.net/?f=pK_%7Ba%7D%20%3D%20pH%20-%20log%20%5Cfrac%7B%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
= 
= 3.42
Thus, we can conclude that
of the weak acid is 3.42.
Products are copper+ aluminium chloride
reactants are aluminium+copper chloride