Answer:
3.036×10⁻¹⁰ N
Explanation:
From newton's law of universal gravitation,
F = Gm1m2/r² .............................. Equation 1
Where F = Gravitational force between the balls, m1 = mass of the first ball, m2 = mass of the second ball, r = distance between their centers.
G = gravitational constant
Given: m1 = 7.9 kg, m2 = 6.1 kg, r = 2.0 m, G = 6.67×10⁻¹¹ Nm²/C²
Substituting into equation 1
F = 6.67×10⁻¹¹×7.9×6.1/2²
F = 321.427×10⁻¹¹/4
F = 30.36×10⁻¹¹
F = 3.036×10⁻¹⁰ N
Hence the force between the balls = 3.036×10⁻¹⁰ N
m/s^2 is 39.2266
is the answer If thats what you needed
Answer:
Explanation:
The unknown charge can not remain in between the charge given because force on the middle charge will act in the same direction due to both the remaining charges.
So the unknown charge is somewhere on negative side of x axis . Its charge will be negative . Let it be - Q and let it be at distance - x on x axis.
force on it due to rest of the charges will be equal and opposite so
k3q Q / x² =k 8q Q / (L+x)²
8x² = 3 (L+x)²
2√2 x = √3 (L+x)
2√2 x - √3 x = √3 L
x(2√2 - √3 ) = √3 L
x = √3 L / (2√2 - √3 )
Let us consider the balancing force on 3q
force on it due to -Q and -8q will be equal
kQ . 3q / x² = k3q 8q / L²
Q = 8q (x² / L²)
so charge required = - 8q (x² / L²)
and its distance from x on negative x side = √3 L / (2√2 - √3 )
4% of 110 is 4.4. So the possible range of speeds is the interval from 110-4.4 till 110+4.4.
105.6 till 114.4