Responder:
6.704 m / s
Explicación:
Se dice que el trabajo se realiza cuando la fuerza aplicada a un objeto hace que el objeto se mueva. Primero necesitamos calcular la distancia recorrida por el perro usando la fórmula del trabajo realizado.
Trabajo realizado = Fuerza × distancia
Distancia = Trabajo realizado / Fuerza
Distancia = W / mg
S = 176/8 × 9,81
S = 176 / 78,48
S = 2,24 m
Dada la velocidad inicial u = 3.6km / h
Convertir a m / s
= 3.6km × 1000m / 1h × 3600
= 3600/3600
= 1 m / s
u = 1 m / s
Usando la ecuación de movimiento
v² = u² + 2gS para obtener la velocidad final v:
v² = 1² + 2 (9,81) (2,24)
v² = 1 + 43,9488
v² = 44,9488
v = √44,9488
v = 6,704 m / s
Por tanto, la rapidez final del perro es de 6,704 m / s
Answer:
circuito paralelo
Explanation:
Siempre el circuito en paralelo dara una resistencia menor. Recuerda que las resistencias se suman en el circuito en serie, an cambio en el circuito en paralelo, la corriente se bifurca de manera de circular con mayor intensidad por las ramas que tengan menos resistencia, y tal situacion llevara siempre a producir una menor resistencia equivalente.
Answer:
650 km/hr
Explanation:
Draw a right triangle from (0.0) (Point A) down 30 degrees and to the right for a length of 750 (Point B). Then draw a line from B up to the x axis to make a right angle (Point C). Use the cosine function to find line AC, the vector portion of AB that lies of the x (East) axis. Cosine(30)= Adjacent/Hypotenuse.
Cos(30) = AC/750
750*(cos(30)) = AC
AC = 649.5 km/hr
Newtons first law states that an object will remain still or in straight line. Until acted upon some force!
Answer: only the third option. [Vector A] dot [vector B + vector C]
The dot between the vectors mean that the operation to perform is the "scalar product", alson known as "dot product".
This operation is only defined between two vectors, not one scalar and one vector.
When you perform, in the first option, the dot product of any ot the first and the second vectors you get a scalar, then you cannot make the dot product of this result with the third vector.
For the second option, when you perform the dot product of vectar B with vector C you get a scalar, then you cannot make the dot product ot this result with the vector A.
The third option indicates that you sum the vectors B and C, whose result is a vector and later you make the dot product of this resulting vector with the vector A. Operation valid.
The fourth option indicates the dot product of a scalar with the vector A, which we already explained that is not defined.