Answer: The engineering design process emphasizes open-ended problem solving and encourages students to learn from failure. This process nurtures students abilities to create innovative solutions to challenges in any subject! In addition to their involvement in design and development, many engineers work in testing, production, or maintenance. These engineers supervise production in factories, determine the causes of a component's failure, and test manufactured products to maintain quality.
Explanation:
Waves in the electric and magnetic fields are known as electromagnetic waves. You must first understand what a field is, which is just a technique of giving each square inch of space a numerical value. You may see that as a temperature field, for instance, when you look at the weather predictions and they mention the temperature in several locations. Every location on Earth has a unique temperature that can be quantified. Everywhere on Earth has its own wind velocity, which is another form of field. This field differs somewhat from the temperature field in that the wind velocity has both a direction and a magnitude, whereas the temperature just has a magnitude (how hot it is). A vector is a quantity that has both magnitude and direction, hence a field that contains vectors at every location is referred to as a vector field. Vector fields include the magnetic and electric fields. We may examine what would happen if we placed a charged particle at any given position in space. If the charged particle were to accelerate, we would state that the electric field there is the direction in which the particle is moving. In general, positively charged particles will move in the electric field's direction, whereas negatively charged particles will move in the opposite way. Because it is a vector field, the magnetic field exhibits comparable behavior. We discovered in the 19th century that the same interaction, electromagnetism, really produces both electric and magnetic fields. Like an electromagnet, a changing electric field will produce a magnetic field, and a changing magnetic field will induce an electric field (like in a generator). If your system is configured properly, you may have an electric field that fluctuates, which in turn produces a magnetic field, which in turn induces another electric field, which in turn generates another magnetic field, and so on indefinitely. At the speed of light, this oscillation between a strong magnetic field and strong electric field spreads out indefinitely. In reality, light is an electromagnetic wave—an oscillation in the electromagnetic fields. An electric or magnetic field may exist without a medium since they exist in a vacuum, which implies that waves in these fields don't require a medium like sound to flow through.
Answer:
The modulus of resilience is 166.67 MPa
Explanation:
Modulus of resilience is given by yield strength ÷ strain
Yield strength = 500 MPa
Strain = 0.003
Modulus of resilience = 500 MPa ÷ 0.003 = 166.67 MPa
The initial void ratio is the <em>parameter </em>which is used to show the structural foundations for each <em>specimen of sand </em>so that the method and speed of compression would be <em>measured</em>.
Relative density is the mass per unit volume of each specimen of sand which is <em>measured </em>and it has to do with the<em> relative ratio</em> of the density of the sand.
Unit weight is the the exact weight per cubic foot of the sand which is measured.
Please note that your question is incomplete so I gave you a general overview to help you better understand the concept
Read more here:
brainly.com/question/15220801