Answer : The concentration of NaOH is, 0.336 M
Explanation:
To calculate the concentration of base, we use the equation given by neutralization reaction:
where,
are the n-factor, molarity and volume of acid which is
are the n-factor, molarity and volume of base which is NaOH.
We are given:
Putting values in above equation, we get:
Thus, the concentration of NaOH is, 0.336 M
Answer:
first we add the same direction. 12N + 32 N=44N .
then we add the forces. 54 up + 44N down= 10N up
Answer: is A
Explanation:
how becuase i just take the test
The change in temperature of the metal is 6.1°C. Details about change in temperature can be found below.
<h3>How to calculate change in temperature?</h3>
The change in temperature of a substance can be calculated by subtracting the initial temperature of the substance from the final temperature.
According to this question, a 25.0 g sample of metal at 16.0 °C is warmed to 22.1 °C by 259J of energy.
This means that the change in temperature of the metal can be calculated as:
∆T = 22.1°C - 16°C
∆T = 6.1°C
Therefore, the change in temperature of the metal is 6.1°C.
Learn more about change in temperature at: brainly.com/question/19051558
#SPJ1
The molar concentration of the nitric acid solution was 0.6666 mol/L.
<em>Balanced equation</em>: KOH + HNO_3 → KNO_3 + H_2O
<em>Moles of KOH</em>: 32.33 mL KOH × (1.031 mmol KOH /1 mL KOH)
= 33.33 mmol KOH
<em>Moles of HNO_3</em>: 33.33 mmol KOH× (1 mmol HNO_3/1 mmol KOH)
= 33.33 mmol HNO_3
<em>Concentration of KOH</em>: <em>c </em>= "moles"/"litres" = 33.33 mmol/50.00 mL
= 0.6666 mol/L