The limiting reagent when 5 g of NaOH and 4.4 g CO₂ allowed to react will be NaOH
<h3>What is Limiting reagent ?</h3>
The limiting reactant (or limiting reagent) is the reactant that gets consumed first in a chemical reaction and therefore limits how much product can be formed.
Given chemical equation in balanced form ;
2NaOH(s) + CO₂(g) → Na₂CO₃(s) + H₂O(l).
According to the Chemical equation ;
- The limiting reagent when 5 g of NaOH and 4.4 g CO₂ allowed to react will be NaOH
If 44 g CO₂ requires 80 g of NaOH, therefore, 4.4 g CO₂ will require atleast 8 g of NaOH.
But the available quantity is 5 g NaOH. thus, NaOH is the Limiting reagent.
- 6.625 g of Na₂CO₃ are expected to be produced 5.0 g of NaOH and 4.4 g of CO₂ are allowed to react
As 80 g NaOH produces 106 g of Na₂CO₃.
Therefore 5 g NaoH will produce ;
106 / 80 x 5 = 6.625 g
Learn more about limiting reagent here ;
brainly.com/question/11848702
#SPJ1
Answer:
It will mess up the orbit around the sun
Explanation:
Answer:
the ion present in the original solution is Ca2+
Explanation:
Precipitation reactions occur when cations and anions in aqueous solution combine to form an insoluble ionic solid called a precipitate.
<u>Step1</u> : If we add Nacl to the solution, there is no precipitate formed
⇒The only possible ion that can form a precipate with Cl- is Ag+; since there is no precipitate formed, Ag+ is not present
<u>Step2</u> : If we add Na2SO4 to the solution, a white precipitate is formed
The possible ions to bind at SO42- are Ca2+ and Fe2+
But the white precipitate formed, points in the direction of Ca2+
⇒This means calcium is present
<u>Step3</u> : If we add Na2CO3 to the filtered solution, there is a precipate formed
Ca2+ will bind also with CO32- and form a precipitate
So the ion present in the original solution is Ca2+
I'm pretty sure it would make it unstable, hydrogen only has one proton thus having the ability to stabilize one electron, adding another electron would most likely make the atom reactive to any positively charged atom to loose this extra electron.