The answer would be A will increase and T <span>will decrease.
The product of this reaction emits red light because it absorbs green and blue light. As the reaction occurs, the concentration of the product increase. This will makes absorbance of green and blue light increases and the solution will become redder.</span>
Answer:
<h3>The answer is option A.</h3>
Hope this helps you
Answer:
81.59%
Explanation:
First we <u>convert 107.50 g of NH₃ into moles</u>, using its <em>molar mass</em>:
- 107.50 g NH₃ ÷ 17 g/mol = 6.32 mol NH₃
Now we <u>calculate how many moles of NO would have been formed by the complete reaction of 6.32 moles of NH₃</u>:
- 6.32 mol NH₃ *
= 6.32 mol NO
Then we <u>convert 6.32 moles of NO to grams</u>, using its <em>molar mass</em>:
- 6.32 mol NO * 30 g/mol = 189.60 g NO
Finally we <u>calculate the percent yield</u>:
- 154.70 g / 189.60 g * 100% = 81.59%
Answer: Hydrogen that is not used in balloons because hydrogen burns very easily.
pls mark brainliest
Answer:
Here's what I get
Explanation:
A plant extract is a mixture because it contains different substances: acetone or ethanol, chlorophylls A and B, carotene and xanthophylls.
It is homogeneous because it is a solution. There is only one phase: the liquid phase. You cannot see the pigments as separate phases.
You can separate the pigments by paper, thin layer, or column chromatography.
Many schools use paper chromatography, because paper is cheap.
As the mixture of pigments follows the solvent up the paper, they separate into different coloured bands according to their attractive forces to the cellulose in the paper.
The chlorophylls are strongly attracted to the paper, so they don't travel very far.
The nonpolar carotene molecules have little attraction to the polar cellulose, so they are carried along by the solvent front.