Answer:
αβ = Ma
Explanation:
By Newton's 2nd Law, the equation governing the motion of the rocket while the rocket is burning fuel is
αβ = Ma where α = rocket's fuel burning rate, β = relative to the velocity of the rocket, M = instantaneous mass of the rocket and a = acceleration of rocket.
Bourne believed that an object would float or sink at will as long as he could <span>manipulate the effect's of buoyancy which control and object to sink or float. Hope this helps!
</span>
<span>2002 seconds, or 33 minutes, 22 seconds.
First, let's calculate how many joules it will take to lift 78 kg against gravity for 1100 meters. So:
78 kg * 9.8 m/s^2 * 1100 m = 840840 kg*m^2/s^2
Now a watt is defined as kg*m^2/s^3, so a division of the required joules should give us a convenient value of seconds. So:
840840 kg*m^2/s^2 / 420 kg*m^2/s^3 = 2002 seconds.
And 2002 seconds is the same as 33 minutes, 22 seconds.</span>
A proton in a particle accelerator is traveling at a speed of 0.99c has a speed magnitude of 2.97 x 10⁸ m/s.
<h3>What is speed of proton?</h3>
The speed of a proton is the rate at which a proton is moving through a given space.
The given speed of the proton is 0.99c
where;
<h3>What is speed of light?</h3>
The speed of light in vacuum, commonly denoted c, is a universal physical constant that is important in many areas of physics.
The value of speed of light in a vacuum is given as 3 x 10⁸ m/s.
The speed of the proton is calculated as follows;
v = 0.99 x 3 x 10⁸ m/s.
v = 2.97 x 10⁸ m/s.
Thus, a proton in a particle accelerator is traveling at a speed of 0.99c has a speed magnitude of 2.97 x 10⁸ m/s.
Learn more about speed of proton here: brainly.com/question/14663642
#SPJ1