Answer:
Compared with the current in the first coil, the current in the second coil is unchanged.
Explanation:
All coils, inductors, chokes and transformers create a magnetic field around themselves consist of an Inductance in series with a Resistance forming an LR Series Circuit.
The steady state of current in the LR circuit is:
I= V/R (1 - e^-Rt/L)
Where I= current
R= Resistance
V= Voltage
Where R/L is the time constant.
For a conducting wire, it has a very small resistance. The time constant will be in microseconds. The current will be in a steady state after few second. The current is independent on the inductance and dependent on the resistance. The length of wire and the resistance here are the same. Therefore, the current remains unchanged.
The correct answer would be "He brought one serving to his neighbor's house, and stored the other two servings in the refrigerator. Devon ate one more serving or spaghetti the following day."
Answer:

Explanation:
Hello,
In this case, considering that the acceleration is computed as follows:

Whereas the final velocity is 28.82 m/s, the initial one is 0 m/s and the time is 4.2 s. Thus, the acceleration turns out:

Regards.
Answer:
8.94*10^22 kg
Explanation:
Given that
Mass of Lo, M = ?
Radius of Lo, r = 1.82*10^6 m
Acceleration on Lo, g = 1.80 m/s²
Gravitational constant, G = 6.67*10^-11
Using the formula
g = GM/r²
Solution is attached below
Answer is 8.94*10^22 kg
Answer:
The final speed of the crate is 12.07 m/s.
Explanation:
For the first 10.0 meters, the only force acting on the crate is 225 N, so we can calculate the acceleration as follows:


Now, we can calculate the final speed of the crate at the end of 10.0 m:
For the next 10.5 meters we have frictional force:


So, the acceleration is:
The final speed of the crate at the end of 10.0 m will be the initial speed of the following 10.5 meters, so:
Therefore, the final speed of the crate after being pulled these 20.5 meters is 12.07 m/s.
I hope it helps you!