Answer:
This is due to impulse
Explanation:
Impulse equal to mΔv and FΔt
You can set these equal as mΔv = FΔt
When a boxer punches a tissue, it is like punching a cushion or a pillow. The time that the hit takes is much grater than if they were to hit something solid. In addition, the change in velocity of the boxer's arm would be much greater when they hit a punching bag. In this equation, the greater the time, the less force that is needed.
The magnitude of your displacement can be equal to the distance you covered, or it can be less than the distance you covered. But it can never be greater than the distance you covered.
This is because displacement is a straight line, whereas distance can be a straight line, a squiggly line, a zig-zag line, a line with loops in it, a line with a bunch of back-and-forths in it, or any other kind of line.
The straight line is always the shortest path between two points.
Incandescent light is a glowing white light produced by heat. An incandescent light bulb works by heating a filament in the bulb. Fluorescent light is a bright light produced by electricity flowing through a tube filled with ionized gas. Fluorescent light bulbs are more energy-efficient than incandescent bulbs
Answer:
w = √[g /L (½ r²/L2 + 2/3 ) ]
When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE
Explanation:
We can simulate this system as a physical pendulum, which is a pendulum with a distributed mass, in this case the angular velocity is
w² = mg d / I
In this case, the distance d to the pivot point of half the length (L) of the cylinder, which we consider long and narrow
d = L / 2
The moment of inertia of a cylinder with respect to an axis at the end we can use the parallel axes theorem, it is approximately equal to that of a long bar plus the moment of inertia of the center of mass of the cylinder, this is tabulated
I = ¼ m r2 + ⅓ m L2
I = m (¼ r2 + ⅓ L2)
now let's use the concept of density to calculate the mass of the system
ρ = m / V
m = ρ V
the volume of a cylinder is
V = π r² L
m = ρ π r² L
let's substitute
w² = m g (L / 2) / m (¼ r² + ⅓ L²)
w² = g L / (½ r² + 2/3 L²)
L >> r
w = √[g /L (½ r²/L2 + 2/3 ) ]
When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE