Answer:
0.4 M
Explanation:
Equilibrium occurs when the velocity of the formation of the products is equal to the velocity of the formation of the reactants. It can be described by the equilibrium constant, which is the multiplication of the concentration of the products elevated by their coefficients divided by the multiplication of the concentration of the reactants elevated by their coefficients. So, let's do an equilibrium chart for the reaction.
Because there's no O₂ in the beginning, the NO will decompose:
N₂(g) + O₂(g) ⇄ 2NO(g)
0.30 0 0.70 Initial
+x +x -2x Reacts (the stoichiometry is 1:1:2)
0.30+x x 0.70-2x Equilibrium
The equilibrium concentrations are the number of moles divided by the volume (0.250 L):
[N₂] = (0.30 + x)/0.250
[O₂] = x/0.25
[NO] = (0.70 - 2x)/0.250
K = [NO]²/([N₂]*[O₂])
K = 
7.70 = (0.70-2x)²/[(0.30+x)*x]
7.70 = (0.49 - 2.80x + 4x²)/(0.30x + x²)
4x² - 2.80x + 0.49 = 2.31x + 7.70x²
3.7x² + 5.11x - 0.49 = 0
Solving in a graphical calculator (or by Bhaskara's equation), x>0 and x<0.70
x = 0.09 mol
Thus,
[O₂] = 0.09/0.250 = 0.36 M ≅ 0.4 M
Answer: 1.9 x 10²⁴ molecules Na
Explanation: To solve for the molecules of Na, we will use the Avogadro's number.
3.2 moles Na x 6.022 x10²³ molecules Na/ 1 mole Nà
= 1.9 x 10²⁴ molecules Na
Did you know conventional argult culture has increased greenhouse gas emissions, soil erosion, water pollution, and threatened humans health. Let’s stop this from harming our environment and take action about this today. Organic farming has a smaller carbon footprint, conserves and builds soil, replenishes natural ecosystems for cleaner water and air, all with a toxic pesticide residues.
The question is incomplete . The complete question is :
100 mg of an unknown protein are dissolved in enough solvent to make 5.00mL of solution. The osmotic pressure of this solution is measured to be 0.107atm at 25.0°C. Calculate the molar mass of the protein. Round your answer to 3 significant digits.
Answer: The molar mass of the protein is 
Explanation:


where,
= osmotic pressure of the solution = 0.107 atm
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (protein) = 100 mg = 0.1 g (Conversion factor: 1 g = 1000 mg)
Volume of solution = 5.00 mL
R = Gas constant = 
T = temperature of the solution = ![25^oC=[273+25]=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B273%2B25%5D%3D298K)
Putting values in above equation, we get:


Hence, the molar mass of the protein is 