Answer:
4.43 g of Oxygen
Explanation:
As shown in Chemical Formula, one mole of Aluminium Sulfate [Al₂(SO₄)₃] contains;
2 Moles of Aluminium
3 Moles of Sulfur
12 Moles of Oxygen
Also, the Molar Mass of Aluminium Sulfate is 342.15 g/mol. It means,
342.15 g ( 1 mole) of Al₂(SO₄)₃ contains = 192 g (12 mole) of O
So,
7.9 g of Al₂(SO₄)₃ will contain = X g of O
Solving for X,
X = (7.9 g × 192 g) ÷ 342.15 g
X = 4.43 g of Oxygen
Unlike solid matter, where particles are tightly packed and slightly vibrating, or gas, where particles go around everywhere and are extremely loose, a liquid has particles that are loosely packed but are still in slight contact with each other. Hope that's good enough
Post the question so we can help
Answer:
q = 40.57 kJ; w = -3.10 kJ; strong H-bonds must be broken.
Explanation:
1. Heat absorbed
q = nΔH = 1 mol × (40.57 kJ/1 mol) = 40.57 kJ
2. Change in volume
V(water) = 0.018 L
pV = nRT
1 atm × V = 1 mol × 0.082 06 L·atm·K⁻¹mol⁻¹ × 373.15 K
V = 30.62 L
ΔV = V(steam) - V(water) = 30.62 L - 0.018 L = 30.60 L
3. Work done
w = -pΔV = - 1 atm × 30.60 L = -30.60 L·atm
w = -30.60 L·atm × (101.325 J/1 L·atm) = -3100 J = -3.10 kJ
4. Why the difference?
Every gas does 3.10 kJ of work when it expands at 100 °C and 1 atm.
The difference is in the heat of vaporization. Water molecules are strongly hydrogen bonded to each other, so it takes a large amount of energy to convert water from the liquid phase to the vapour phase.