Jonathan is not correct because it has to be a trait that is learned.
So in that case Jonathan has to say that this is not an inherited trait it is learned by most people.
Answer:
55.75g
Explanation:
From
m/M = CV
Where
m= required mass of solute
M= molar mass of solute
C= concentration of solution
V= volume of solution=675ml
Molar mass of solute= 3(23) + 31 + 4(16)= 69+31+64=164gmol-1
Number of moles of sodium ions present= 1.5× 675/1000= 1.01 moles
Since 1 mole of Na3PO4 contains 3 moles of Na+
It implies that 1.01/3 moles of Na3PO4 are present in solution= 0.34moles
mass of Na3PO4= number of moles × molar mass= 0.34 × 164 =55.75g
Answer:
To tell if something is an acid or a base, you can use a chemical called an indicator. An indicator changes color when it encounters an acid or base. There are many different types of indicators, some that are liquids and others that are concentrated on little strips of "litmus" paper.
Explanation:
Answer:
Average atomic mass = 51.9963 amu
Explanation:
Given data:
Abundance of Cr⁵⁰ with atomic mass= 4.34%
, 49.9460 amu
Abundance of Cr⁵² with atomic mass = 83.79%, 51.9405 amu
Abundance of Cr⁵³ with atomic mass =9.50%, 52.9407 amu
Abundance of Cr⁵⁴ with atomic mass = 2.37%, 53.9389 amu
Average atomic mass = 51.9963 amu
Solution:
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass +....n) / 100
Average atomic mass = (4.34×49.9460)+(83.79×51.9405) +(9.50×52.9407)+ (2.37×53.9389) / 100
Average atomic mass = 216.7656 + 4352.0945 + 502.9367 +127.8352 / 100
Average atomic mass = 5199.632 / 100
Average atomic mass = 51.9963 amu
Answer:
the ans is in the picture with the steps
(hope it helps can i plz have brainlist :D hehe)
Explanation: