Answer:
See explaination
Explanation:
Go to the attached file for the detailed and step by step solution of the given.
Answer:
The resulting pressure is 2.81 atm
Explanation:
According to Dalton's Law of Partial Pressure, each of the gases (A and B) will exert their pressure independently. If we use Boyle's Law to calculate the pressure of each of the gases separately we have:
Pressure of gas A:
p1V1 = p2V2
p1 = 2.4 atm
V1 = 722 mL
V2 = 722 + 169 = 891 mL
p2 =?
Clearing p2:
p2 = (p1V1)/V2 = (2.4*722)/891 = 1.94 atm
Pressure of gas B:
p1 = 4.6 atm
V1 = 169 mL
V2 = 169+722 = 891 mL
p2=?
Clearing p:
p2 = (4.6*169)/891 = 0.87 atm
Dalton's expression for total partial pressures is equal to:
ptotal = pA + pB = 1.94+0.87 = 2.81 atm
Answer:
On the periodic table, there are two numbers for every element: the atomic number and the atomic weight.
The numbers at the top of the square represents the number of protons present in the atom's nucleus of that element. This is called the atomic number.
For example, the atomic number for the element Krypton is 36. That means that there are 36 protons in the nucleus. If there were not 36 protons in the nucleus of that atom, that would create the atom of a completely different element. For example, if one proton was to be removed from the nucleus of the atom for the element of Krypton that atom will be an atom of the element bromine.
Explanation:
The density of metal block in grams per cubic centimeter is 10.70 g/cm³.
Given,
Mass of metal block = 5.16 lb
1 lb = 453.592 g
5.26 lb = 2340.536 g
The volume of metal block = 14 in 3
1 in = 2.5 cm
1 in 3 = 15.625 cm³
14 in 3 = 218.75 cm³
Density is defined as the mass per unit volume of a substance. Or, it is the ratio of mass to the volume of the substance.
As we know,
Density = mass/volume
Or, density = 2340.536 / 218.75
Or, density = 10.70 g/cm³
Therefore, the density of the metal block is 10.70 g/cm³.
To learn more about the density, visit: brainly.com/question/15164682
#SPJ9