Answer:
The heliosphere is the vast, bubble-like region of space that surrounds and is created by the Sun.
Answer:
sp³
Explanation:
Number of hybrid orbitals = ( V + S - C + A ) / 2
Where
H is the number of hybrid orbitals
V is the valence electrons of the central atom = 5
S is the number of single valency atoms = 4
C is the number of cations = 1
A is the number of anions = 0
For PCl₄⁺
Applying the values, we get:
H = ( 5+4-1+0) / 2
= 4
<u>This corresponds to sp³ hybridization.</u>
Answer: m= 3.15x10-3 g NaHCO3
Explanation: To find the mass of NaHCO3 we will use the relationship between moles and molar mass. The molar mass of NaHCO3 is 84 g.
3.75x10-5 moles NaHCO3 x 84 g NaHCO3 / 1 mole NaHCO3
= 3.15x10-3 g NaHCO3
Answer:
The correct answer is "Fragment B likely has a higher Guanosine/Citosine content".
Explanation:
Guanosine/Citosine content, or GC content, refers to how many molecules of guanosine and citosine have a DNA fragment, respect to the content of adenine and thymine. The higher the GC content, the higher the temperature needed to denature the fragment of DNA. This happens because guanosine and citosine establish three hydrogen bonds, while adenine and thymine establish two hydrogen bonds when they bind together. Therefore, if fragment A and B are the same length, but at 89 C only fragment A is completely denatured, fragment B likely has a higher GC content.
Answer:
I think it's replacement because the B and D just swap places in the end equation