Answer:

Step-by-step explanation:
First, let's change those variables to x and y, just for the sake of convenience. In order to find the inverse of a function algebraically, switch the x and y coordinates, then solve for the new y. Letting y = A(n) and x = n (we will switch them back when we're done):
y = 3x - 20. This is linear; a line with a slope of 3 and a y-intercept of -20. When we switch the x and the y, we get:
x = 3y - 20. Now we solve for the new y. Begin by adding 20 to both sides:
x + 20 = 3y. Now divide both sides by 3:
, or to write it in slope-intercept form, like the function you started with:

This is also a line, with a slope of 1/3 and a y-intercept of +20/3
Now, replacing:

That is how to write the inverse using function notation. The little -1 as an exponent tells us that this is the inverse of the function A(n).
Answer:
If two powers have the same base then we can multiply the powers. When we multiply two powers we add their exponents.
Step-by-step explanation:
The slope is -3 I’m not sure about the intercept
Answer:
Number of quarters → 15
Number of dimes → 2
Step-by-step explanation:
Let the number of dimes I have = y
And number of quarters = x
Since, I have amount in my pocket = $2
Therefore, 0.10y + 0.25x = 2
100(0.10y + 0.25x) = 100×2
25x + 10y = 200
5x + 2y = 40
2y = -5x + 40
y = -2.5x + 20 ---------(1)
Total number of coins in my pocket = 17
x + y = 17
y = -x + 17 ---------(2)
By using a graphing calculator we can graph these two lines (As attached)
Solution of the given system of equations will be the point of intersection of these lines.
Solution → (2, 15)
Number of quarters → 15
Number of dimes → 2
Answer:
The answer is between first option and last option.
Step-by-step explanation:
That my Contributions to this questions