Solar energy, wind energy, and hydroelectric energy are all renewable energy
Answer:
a) 0.09N b) positive x direction
Explanation:
Force on a conductor carrying current in a magnetic field can be expressed as;
F = BILsin(theta) where
F is the force on the conductor (wire)
B is the uniform magnetic field I'm Tesla = 1.8Tesla
I is the current in the wire = 5×10^-2A
L is the length of the wire = 1m
theta is the angle that the conductor make with the magnetic field = 90° (since the wire in the horizontal direction is perpendicular to the field acting upwards)
Substituting this value in the formula to get F we have;
F = 1.8×5×10^-2×1 × sin90°
F = 0.09N
The force on the wire is 0.09N
b) The direction of the force is in the positive x direction since the wire acts horizontally to the magnetic field.
Answer: Virtual, upright and diminished.
Explanation:
A transparent material that focuses or diverges light is known as a lens. There are mainly two types of lens: concave lens and convex lens. Other lens can be made using combination of these two and plane one.
A concave lens is a diverging lens. It means the light from any real object after passing through this lens appears to diverge from the focus. A image formed by a diverging lens is virtual, upright and diminished.
Answer:
speed = 20 m/s
Explanation:
speed = frequency * wavelength
speed = 4 * 5
speed = 20 m/s
Answer:
This material exhibits paramagnetism.
Explanation:
A paramagnetic material has these features: It doesn’t have any magnetic properties when placed in an external magnetic field, it gains and then loses the magnetic property as the external field is removed.
Such materials have magnetic moments oriented in random directions, thus making the net magnetic moment, zero. But when placed in an external field, they do possess a net magnetic moment. When the magnetic field is removed, they lose the magnetic property.
Thus, the material which produces no initial magnetic field when placed in a uniform magnetic field produces an additional internal magnetic field parallel to the original field. Also, it loses the magnetic properties as soon as the external magnetic field is removed. Then, the magnetism the material exhibits is paramagnetic.