<span>An insect would have an easier time walking on the surface of water than on the surface of ethanol. Water's stronger intermolecular forces lead to higher surface tension. Higher surface tension allows water to support the insect. I hope this helps.</span>
To balance this equation, first we should consider balancing C because it only presents in one reactant and one product. Assuming the coefficient of C6H6 is 1, there are 6 C's in the reactant, so it generates 6CO2. Then consider balancing H for the same reason. If the coefficient of C6H6 is 1, there are 6 H's in the reactant, so it generates 3H2O.
Now that the coefficient of the products are determined, we can balance O. There are 6*2=12 O's in CO2 and 3*1=3 O's in H2O. So the total number of O in the products is 12+3 = 15. O2 is the only reactant that contains O, so to balance the equation, the coefficient of O2 should be 15/2.
Now the equation looks like:
C6H6 + 15/2O2 ⇒ 6CO2 + 3H2O.
Times both sides of the equation by 2 results the final answer:
2C6H6 + 15O2 ⇒ 12CO2 + 6H2O
When sodium amide i.e.
reacts with water i.e.
results in the formation of sodium hydroxide i.e.
and ammonia
.
The chemical reaction is given by:

Now, when ammonia i.e.
reacts with water results in the formation of ammonium hydroxide i.e. 
The chemical reaction is given by:

Thus, the products of the above reactions are ammonia and ammonium hydroxide (without sodium ion).
The structures of the products are shown in figure (1): ammonium hydroxide and figure (2) ammonia.