Answer: option C) II < III < I
i.e [OH−] < [H3O+] < I
Explanation:
First, obtain the pH value of I and II, then compare both with III.
For I
Recall that pH = -log (H+)
So pH3O = -log (H3O+)
= - log (1x10−5)
= 4
For II
pOH = - log(OH-)
= - log(1x10−10)
= 9
For III
pH = 6
Since, pH range from 1 to 14, with values below 7 to be acidic, 7 to be neutral, above 7 to be alkaline: then, 9 < 6 < 4
Thus, the following solutions from least acidic to most acidic is II < III < I
Answer:
so 0.15 moles X 22.4 dm3/mole=3.36 dm3. Next we find the moles of hexane combusted, and then the moles of CO2. Finally, we find the volume of CO2 using the fact that at STP, 1 mole of gas = 22.4 dm3.
Cylinder D
temperature is the measurement of average kinetic energy of a sunstance. since cylinder D has the highest average velocity, it has the highest average kinetic energy among the 4 cylinders, thus cylinder D is the hottest.
Answer:
Mass of Sodium = 574.75 g
Mass of Chlorine = 886.25 g
Explanation:
The balance chemical equation for the synthesis of NaCl is,
2 Na + Cl₂ → 2 NaCl
Step 1: <u>Find out moles of each reactant required,</u>
According to balance chemical equation,
2 moles of NaCl is produced by = 2 moles of Na
So,
25 moles of NaCl will be produced by = X moles of Na
Solving for X,
X = 25 mol × 2 mol / 2 mol
X = 25 moles of Na
Similarly for Cl₂,
According to balance chemical equation,
2 moles of NaCl is produced by = 1 mole of Cl₂
So,
25 moles of NaCl will be produced by = X moles of Cl₂
Solving for X,
X = 25 mol × 1 mol / 2 mol
X = 12.5 moles of Cl₂
Step 2: <u>Convert each moles to mass as;</u>
Mass = Moles × Atomic Mass
For Na,
Mass = 25 mol × 22.99 g/mol
Mass = 574.75 g
For Cl₂,
Mass = 12.5 mol × 70.90 g/mol
Mass = 886.25 g