B. Mn + NiBr₂ → Ni + MnBr₂
Explanation:
The reaction that can be predicted of all is Mn + NiBr₂ → Ni + MnBr₂.
The activity series is used to predict the products of single displacement reactions.
The series ranks metals in order of their reactivity. Those higher up in the series are highly reactive metals. Those at the bottom are slightly to non-reactive metals.
For a single displacement reaction to occur, a metal higher up in the activity series displaces one that is lower in the series.
Reaction A will not occur, Ba is higher in the series
Reaction C will not occur, Pt and Au are unreactive
Reaction D will not occur as Zn is lower in the series
Mn is higher in the reactivity series and it will displace Ni from the solution.
Learn more:
Synthesis reaction brainly.com/question/4216541
#learnwithBrainly
The density of each half of the coin is 10.49 g/cm3
In science density is defined as the ratio of mass to volume of an object.
Density is an intrinsic property.It is not affect by the amount of substance present.
This implies that each half of the broken coin must have the same density since it it is an inherent property of every silver material.
The density of each part of the coin therefore is 10.49 g/cm3.
Learn more: brainly.com/question/18320053
Answer:
This cannot be determined without knowing the actual mass of the objects.
Explanation:
its like trying to compare the letter A and letter B
Answer:
The vapor pressure of the solution is 23.636 torr
Explanation:

Where;
is the vapor pressure of the solution
is the mole fraction of the solvent
is the vapor pressure of the pure solvent
Thus,
15.27 g of NaCl = [(15.27)/(58.5)]moles = 0.261 moles of NaCl
0.67 kg of water = [(0.67*1000)/(18)]moles = 37.222 moles of H₂O
Mole fraction of solvent (water) = (number of moles of water)/(total number of moles present in solution)
Mole fraction of solvent (water) = (37.222)/(37.222+0.261)
Mole fraction of solvent (water) = 0.993
<u>Note:</u> the vapor pressure of water at 25°C is 0.0313 atm
Therefore, the vapor pressure of the solution = 0.993 * 0.0313 atm
the vapor pressure of the solution = 0.0311 atm = 23.636 torr
Answer : The concentration of NOBr after 95 s is, 0.013 M
Explanation :
The integrated rate law equation for second order reaction follows:
![k=\frac{1}{t}\left (\frac{1}{[A]}-\frac{1}{[A]_o}\right)](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B1%7D%7Bt%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%5BA%5D_o%7D%5Cright%29)
where,
k = rate constant =
t = time taken = 95 s
[A] = concentration of substance after time 't' = ?
= Initial concentration = 0.86 M
Now put all the given values in above equation, we get:
![0.80=\frac{1}{95}\left (\frac{1}{[A]}-\frac{1}{(0.86)}\right)](https://tex.z-dn.net/?f=0.80%3D%5Cfrac%7B1%7D%7B95%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%280.86%29%7D%5Cright%29)
[A] = 0.013 M
Hence, the concentration of NOBr after 95 s is, 0.013 M