This is an acid base reaction and the chemical equation for the above reaction is as follows;
KOH + HClO₄ ---> KClO₄ + H₂O
the stoichiometry of acid to base is 1:1
KOH is a strong base and HClO₄ is a strong acid therefore they both ionize completely into their respective ions
Number of KOH moles - 0.723 M/1000 mL/L x 25.0 mL = 0.018 mol
Number of HClO₄ moles - 0.273 M/1000 mL/L x 50 mL = 0.013 mol
since acid and base react completely, 0.013 mol of acid reacts with 0.013 mol of base.
The excess base remaining is - 0.018 - 0.013 = 0.005 mol
total volume of solution = 25.0 mL + 50.0 mL = 75.0 mL
[OH⁻] = 0.005 mol/0.075 L = 0.067 M
pOH = -log[OH⁻]
pOH = -log(0.067 M)
pOH = 1.17
pOH + pH = 14
Therefore pH = 14 - 1.17 = 12.83
by knowing pH we can calculate the [H₃O⁺]
pH = -log [H₃O⁺]
[H₃O⁺] = antilog[-12.83]
[H₃O⁺]= 1.47 x 10⁻¹³ M
Answer:
1.79 mol.
Explanation:
- For the balanced reaction:
<em>2NaCl + F₂ → 2NaF + Cl₂.
</em>
It is clear that 2 mol of NaCl react with 1 mol of F₂ to produce 2 mol of NaF and 1 mol of Cl₂.
- Firstly, we can get the no. of moles of F₂ gas using the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm (P = 1.2 atm).
V is the volume of the gas in L (V = 18.3 L).
n is the no. of moles of the gas in mol (n = ??? mol).
R is the general gas constant (R = 0.0821 L.atm/mol.K),
T is the temperature of the gas in K (299 K).
∴ no. of moles of F₂ (n) = PV/RT = (1.2 atm)(18.3 L)/(0.0821 L.atm/mol.K)(299 K) = 0.895 mol.
- Now, we can find the no. of moles of NaCl is needed to react with 0.895 mol of F₂:
<em><u>Using cross multiplication:</u></em>
2 mol of NaCl is needed to react with → 1 mol of F₂, from stichiometry.
??? mol of NaCl is needed to react with → 0.895 mol of F₂.
∴ The no. of moles of NaCl needed = (2 mol)(0.895 mol)/(1 mol) = 1.79 mol.
The effective nuclear charge is an innate property of a specific element. It is the pull of force that an electron feels from the nucleus. It is related to the valence electron by the equation: Z* = Z-S, where Z* is the effective nuclear charge, Z is the atomic number and S is the shielding constant.
For the following elements in the choices, these are their values of Z*:
Aluminum - +12.591
Beryllium - +1.912
Hydrogen - +1
Carbon - +4
The effective nuclear charge of Boron is +3. Thus, the answers are Aluminum and Carbon.
Explanation:
Let us take the volume of block is x.
Since, the block is floating this means that it is in equilibrium. Formula to calculate net force will be as follows.

Also, buoyancy force
= (volume submerged in water × density of water) + (volume in oil × density of oil)
=
=
g
As, W = V × density of graphite × g
It is given that density of graphite is
or 2160
.
So, W = 2160 V g
= (0.592 V \rho + 408 V) g - 2160 V g = 0
= 1752
= 2959.46
or 2.959
is the density of oil.
It is given that mass of flask is 124.8 g.
Mass of 35.3
oil =
104.7 g
Hence, in second weighing total mass will be calculated as follows.
(124.8 + 104.7) g
= 229.27 g
Thus, we can conclude that in the second weighing mass is 229.27 g.
Answer:
Sodium (Na) has atomic number 11.