With one cup of sugar, you need five cups of water. For one cup, you divide one by five, which would be 1/5 cups of sugar.
Answer:
Slope of line is ![\pi](https://tex.z-dn.net/?f=%5Cpi%20)
Step-by-step explanation:
Given that the company logo has four concentric circles.
To plot the line on the graph take point as ( Diameter, Circumference )
Circumference of a circle is given by C=![\pi D](https://tex.z-dn.net/?f=%5Cpi%20D)
Where D is the diameter.
To draw a line, we need at least two-point.
Now,
Take D=1
Circumference of a circle will be C=![\pi D=\pi](https://tex.z-dn.net/?f=%5Cpi%20D%3D%5Cpi%20)
Required point is (1,
)
Take D=0
Circumference of a circle will be C=![\pi D=0 \pi](https://tex.z-dn.net/?f=%5Cpi%20D%3D0%20%5Cpi%20)
Required point is (0,0)
The slope of line is given by s=![\frac{Y2-Y1}{X2-X1}](https://tex.z-dn.net/?f=%5Cfrac%7BY2-Y1%7D%7BX2-X1%7D)
Hence,
s=![\frac{Y2-Y1}{X2-X1}](https://tex.z-dn.net/?f=%5Cfrac%7BY2-Y1%7D%7BX2-X1%7D)
s=
}{0-1}[/tex]
s=
}{1}[/tex]
s=![\pi](https://tex.z-dn.net/?f=%5Cpi%20)
Thus, Slope of line is ![\pi](https://tex.z-dn.net/?f=%5Cpi%20)
Let h = height of the box,
x = side length of the base.
Volume of the box is
![V=x^{2} h = 115](https://tex.z-dn.net/?f=V%3Dx%5E%7B2%7D%20h%20%3D%20115%20)
.
So
![h = \frac{115}{ x^{2} }](https://tex.z-dn.net/?f=h%20%3D%20%5Cfrac%7B115%7D%7B%20x%5E%7B2%7D%20%7D%20)
Surface area of a box is S = 2(Width • Length + Length • Height + Height • Width).
So surface area of the box is
![S = 2( x^{2} + hx + hx) \\ = 2 x^{2} + 4hx \\ = 2 x^{2} + 4( \frac{115}{ x^{2} } )x](https://tex.z-dn.net/?f=S%20%3D%202%28%20x%5E%7B2%7D%20%20%2B%20hx%20%2B%20hx%29%20%20%5C%5C%20%3D%202%20x%5E%7B2%7D%20%20%2B%204hx%20%20%5C%5C%20%20%3D%202%20x%5E%7B2%7D%20%20%2B%204%28%20%5Cfrac%7B115%7D%7B%20x%5E%7B2%7D%20%7D%20%29x)
![= 2 x^{2} + \frac{460}{x}](https://tex.z-dn.net/?f=%3D%202%20x%5E%7B2%7D%20%2B%20%5Cfrac%7B460%7D%7Bx%7D%20)
The surface are is supposed to be the minimum. So we'll need to find the first derivative of the surface area function and set it to zero.
![S' = 4x- \frac{460}{ x^{2} } = 0](https://tex.z-dn.net/?f=S%27%20%3D%204x-%20%5Cfrac%7B460%7D%7B%20x%5E%7B2%7D%20%7D%20%20%3D%200)
![4x = \frac{460}{ x^{2} } \\ 4x^{3} = 460 \\ x^{3} = 115 \\ x = \sqrt[3]{115} = 4.86](https://tex.z-dn.net/?f=%204x%20%3D%20%5Cfrac%7B460%7D%7B%20x%5E%7B2%7D%20%7D%20%20%5C%5C%20%204x%5E%7B3%7D%20%3D%20460%20%20%5C%5C%20x%5E%7B3%7D%20%3D%20115%20%20%5C%5C%20x%20%3D%20%20%5Csqrt%5B3%5D%7B115%7D%20%3D%204.86%20)
Then
![h= \frac{115}{4.86^{2}} = 4.87](https://tex.z-dn.net/?f=h%3D%20%20%5Cfrac%7B115%7D%7B4.86%5E%7B2%7D%7D%20%3D%204.87%20)
So the box is 4.86 in. wide and 4.87 in. high.
The answer is 3.
The fundamental theorem of algebra says that a number of zeros of a polynomial are equal to the highest exponent on a variable.
The polynomial is <span>f(x)=x</span>³<span>-10x</span>²<span>+27x-12
The highest exponent of a variable x is 3: x</span>³
Therefore, the number of zeroes of the polynomial is 3.
Answer: 3-
Step-by-step explanation: